This manual is a guide to the collection and entry of data into the MINFILE database. For a hard copy (166 pages) of this manual please print this PDF Version (1.6 MB).
The Coding Manual complements the MINFILE User's Manual, which provides instructions on installing, operating, and using the MINFILE/pc program. For comprehensive information concerning the MINFILE/pc program refer to the MINFILE User's Manual.
1. Introduction
2. General Information
3. Occurrence Identification
4. Mineral Occurrence
5. Hostrock
6. Geological Setting
7. Capsule Geology
8. Bibliography
9. Inventory
10. Production
11. Appendices
12. Figures
MINFILE is a relational database containing information on metallic, industrial mineral and coal occurrences within the Province of British Columbia.
An occurrence is defined as in-situ bedrock or placer mineralization, on surface, in drill holes, or in underground workings; generally, it does not include float, geochemical or geophysical anomalies.
MINFILE/www is used to enter data, search, sort and manipulate the MINFILE database and MINFILE/pc is downloadable software that can be used to search the database offline from your own remote workstation. Such data manipulation allows efficient access to information on over 14,750 occurrence descriptions.
The purpose of this manual is to instruct users in the collection and entry of data into the database. Online help is also available from the MINFILE/www online coding card. This manual is an update of Version 4.5, (Information Circular 2004-3) which replaced the previous versions (Version 4.5 July 2000 and Version 4.0, (Information Circular 1996-5)). For comprehensive information concerning the MINFILE/www and MINFILE/pc programs refer to the MINFILE/pc User's Manual.
Comments and requests for MINFILE information, this Manual, MINFILE/www, MINFILE/pc and the MINFILE/pc User's Manual should be directed to:
MINFILE
Ministry of Energy and Mines
BC Geological Survey
PO Box 9333 Stn Prov Govt
Victoria BC, Canada V8V 1X4
Location: 5th Floor - 1810 Blanshard Street
The MINFILE Coding Manual is a guide for completing the MINFILE/www online coding card or writing up a paper coding form (Appendix XII). This manual, which follows the general format and sequence of the MINFILE/www online coding card, explains the type, limitation, and format of data required for input into the MINFILE database.
There are 3 ways to collect and input data into the MINFILE database.
1. Fill in a MINFILE coding form (Appendix XII) with the appropriate information and then enter this information into the MINFILE/www online coding card.
2. Or, skip the coding form and enter the data directly into the MINFILE/www online coding card.
3. Or, you can perform a search, generate a MINFILE Detailed Report on the results, and indicate the appropriate changes on the hard copy print out (this obviously won’t work for new occurrences). These changes can be sent to the Ministry for review by the MINFILE geologist.
MINFILE/www Online Coding Card Access:
In order to be able to submit occurrence data online you need the following:
1. a BCeID Account
2. a userid from the MINFILE Unit by emailing Gabe Fortin.
Data fields can be mandatory or optional, depending on how critical the field is to maintaining relationships within the database. In this manual and on the MINFILE/www online coding form, mandatory fields are denoted by an asterisk(*) and must be completed. Online coding forms contain list boxes for many of the fields whereby the user can simply view the options and select from a list box. Some of the locational fields are automatically populated based on location (either latitude/longitude or UTM coordinates). Online help is also available when using the online coding card.
The field headings in this manual also list the corresponding relational file name (e.g. R02 for Status description) and code table name (e.g. E02 for Status code). Data is indicated on the coding form by checking an appropriate box or filling in the blank. Appendix XI is a summary of data field characteristics.
Most of the data fields are stored as codes. For example, BIOTITE is stored as BOIT. These are efficient for storage in a relational database and for searches. These codes and their translations are controlled by the code tables. Most of the tables in the MINFILE system are "closed". This means that to enter the mineral BIOTITE it must already exist in the code tables. The description must be entered in the exact format it is entered in the code table, otherwise the computer will reject the input.
On the MINFILE/www online coding card, "pick lists" and/or "pull-down menus" help you to select the correct description from valid entries; the data is automatically stored as the appropriate code. The MINFILE/www program has built-in error checking and prevents misspelled technical words from being entered. New items can be added to the code tables, if required. The tables are updated by the Database Administrator on a regular basis.
Once information is entered into the MINFILE database, the coding forms for all new occurrences will be retained. Once new occurrences are entered and submitted online they will be deposited in the "Task List" awaiting review/approval by MINFILE staff. Until they are approved (or rejected) they will not be available to you or others for further editing. Once a new occurrence is approved or rejected you will be notified by email. See Appendix X for the recommended coding and editing guidelines.
3.1 Coding Activity and How to Start Coding Online
This field is only used when filling in a coding form. It is not stored or used when entering data directly into the MINFILE/www online coding card.
The top right hand corner of the MINFILE coding form contains the terms NEW, REVISE and DELETE. These are not part of the database information but are included for administration only. The appropriate term should be checked by the coding geologist to indicate how the data on the coding form should be treated during data entry. The terms have the following meanings:
NEW - This indicates that a new occurrence is being created and all the data will be entered under a newly assigned MINFILE number. Official MINFILE occurrence numbers are issued by the MINFILE Team. Once information is entered into the MINFILE database, the coding forms for all new occurrences will be retained by the MINFILE Team. The coding form is useful for coding New occurrences (see Appendix XII). REVISE - This indicates that the data filled in on the coding form replaces or should be added to the existing data for the stated MINFILE number. Any change to the data, from a minor change to a major rewrite, is considered to be a revision. When doing a Revise the geologist can indicate on the coding form or MINFILE Detailed Report the specific fields which are to replace existing data or data which is to be added. It is not necessary to complete the entire form when doing a Revise, but inclusion of the MINFILE number is mandatory. DELETE - This indicates that an existing MINFILE number and all the attached data are to be deleted from the database. A deletion indicates that the researching geologist has confirmed that the occurrence does not exist or the occurrence has been combined with another MINFILE number. An appropriate reason must be given for a deletion. Before deleting an occurrence, a MINFILE Detailed Report must be generated. Written on the MINFILE Detailed Report must be the word DELETED, the reason for the deletion, the date of deletion and the name of the person requesting the deletion. The MINFILE Detailed Report must then be forwarded to a member of the MINFILE Team. |
HOW TO START CODING ONLINE
If you choose to go directly through the MINFLE online coding card when coding a new occurrence then select the "Add New Occurrence" option on the left hand menu. If you cannot see this option then you are not currently authorized to code MINFILE occurrences. You must contact the MINFILE Unit to obtain access to the MINFILE/www online coding card before you can go further.
To revise an existing occurrence, initiate a search for the occurrence based on MINFILE Number, Name, etc. Once the search results appear on the screen you must select the record you want to revise by clicking on the MINFILE Number field. The mineral occurrence then appears on the screen and you can select the option "Revise Mineral Occurrence" in the top right hand corner of the screen. See 2. General Information for how to obtain access to the MINFILE online coding card.
3.2 MINFILE Number (*)(all relational files)
Each mineral occurrence has a unique 9-character MINFILE number used to identify it within the computer database, in hard-copy printouts and on location maps. This number is assigned by the MINFILE Database Administrator after the record has been submitted and approved. The MINFILE number begins with a three-digit NTS (National Topographic System) location number used to identify the appropriate 1:1 000 000 map sheet (from 082 to 114), followed by a single alphabetic character (A to P) used to identify the appropriate 1:250 000 map sheet.
Due to a high density of occurrences, NTS map sheets 082E, F, K, L, 92H and I are plotted at a 1:100 000 scale. In these cases, a two-character (NE, NW, SE, SW) designation identifies the appropriate quadrant on the map sheet. The other map areas are plotted at a 1:250 000 scale and two blank spaces must be input in place of the two-character quadrant designation. An exception is 092IW.
The final three-character segment of the MINFILE number is a sequential three-digit number from 001 to 999, identifying the unique number on the map sheet. For example, 082FSW100 is the 100th occurrence documented in the 082FSW 1:100 000 scale NTS area. If a new occurrence is documented, an occurrence number will be assigned by the MINFILE Team.
Examples: | 082FSW100 at 1:100 000 scale 093M 014 at 1:250 000 scale 092JW 002 is an exception |
3.3 NAME (*) (R08)
This is the most common or historically relevant name for an occurrence. Names in current use may or may not be the most appropriate for an occurrence in a historical context. List the most important name first followed by all aliases, in order of importance. Duplication of a first ranked name for different occurrences on the same map sheet is discouraged. Each occurrence can have up to sixteen names of 30 characters each. All appropriate names should be included.
3.4 National Mineral Inventory (NMI) Number (E01)
This is a cross-reference to the National Mineral Inventory file located at the Mining Sector of Natural Resources Canada in Ottawa. This file is no longer being updated and maintained. Each documented mineral deposit in Canada is assigned a unique National Mineral Inventory Number. The number follows NTS conventions and consists of a 1:1 000 000 scale map designation (e.g., 082, 104, 093), followed by a 1:250 000 scale map designation consisting of an alphabetical character (A to P). This is followed by a 1:50 000-scale map designation consisting of a one or two-digit number (1 to 16), then by a commodity code (e.g., Au, Ag, Zn, etc.) and an occurrence number (e.g., 1, 2, 3, etc.). This field is free form with 18 characters.
Example: 103F9 Au1
3.5 STATUS (*) (R02)
The STATUS describes the state of development of the occurrence as of the date of coding. Status is assigned by checking the appropriate box listed on the coding form or selecting the appropriate status from the list brought up when anything is entered in this field on the computer. Each occurrence has only one status. Producers and Past Producers must be defined as either underground or open pit operations (select at least one using an X). Underground should be used to indicate existence of an adit on a site.
STATUS TYPES | DESCRIPTION | CODE | SYMBOL | LINE | FILL |
Anomaly | This status type is a holding place for temporary occurrences or occurrences of interest that do not have documented in-situ mineralization. It may also be a site of interest which is recognized from any one or more of: geophysics, geochemistry, surface sampling, prospective geology, or surficial feature such as float, till, drift, or frost-heave (felsnmeer). | ANOM | Cross (+) | 04 | 0 |
Showing | Occurrences hosting minor in-situ mineralization. | SHOW | Solid circle | 01 | 1 |
Prospect | Occurrences documented as containing mineralization which warrants further exploration. | PROS | Cross & square | 60 | 0 |
Developed Prospect | occurrences on which exploration and development have progressed to a stage that allows a reasonable estimate of the amount(s) of one or more of the potentially mineable commodities. | DEPR | Solid square | 02 | 1 |
Producer | Currently producing mine. Occurrences from which ore containing one or more commodities is being mined for commercial gain or benefit. This does NOT include large bulk samples for testing purposes. Coding must specify whether it is an open pit or underground operation. | PROD | Pick & shovel | 57 | 0 |
Past Producer | Past producing mine. Occurrences that are not currently being mined and have recorded production in the past. This does not include bulk samples for testing purposes. Coding must specify whether it was an open pit or underground operation. | PAPR | Circl,Pick&Shvl | 58 | 0 |
Unknown | Data entry is incomplete, or occurrence reported but nothing else known. | **** | Open circle | 01 | 0 |
3.6 REGION
This field describes the part of the world the mineral occurrence is located in. For online coding it always defaults to "BC: British Columbia" but you must still click "Add" to select.
3.7 LOCATION (*) (E01)
Coordinates for an occurrence may be input in either a latitude-longitude or a Universal Transverse Mercator grid (UTM) format (North American Datum NAD 83 is the default. The MINFILE/pc and MINFILE/www online coding card will automatically convert whichever coordinates you enter to the alternate system. Geodetic (latitude-longitude) designations have an east to west convention while the UTM system has a west to east convention.
It is much simpler to locate by UTM grid than by geodetic coordinates because the spacing is the same everywhere and is metric. There is some overlap of the coordinate system from zone to zone but for normal use the overlap is ignored.
The location of an occurrence should be the most significant physical reference point. In some cases this will be an adit, portal or similar mine working. In other cases, the location may be defined as the centre of a mineral claim or group of claims, a point on the best exposure of a formation, etc. Commonly, the location is a trench, sample site, outcrop or drillhole site. This MUST be clearly stated in the Identification Comment Field, along with the reference from which the location was derived. For example: The Discovery trench at the southeast corner of the Sam claim (Assessment Report 99999). Locational data derived from engineering surveys should be used if available, but the data is usually from 1:50 000 scale or more detailed maps.
3.7.1 LATITUDE/LONGITUDE: The latitude/longitude of a mineral occurrence is expressed in a degrees-minutes-seconds format. For example: Latitude 50 degrees 14 minutes 12 seconds, Longitude 117 degrees 05 minutes 13 seconds. The range of possible values in British Columbia are: Latitude 48 degrees to 60 degrees, Longitude 114 degrees to 140 degrees. Coordinates outside this range will be rejected by the system.
3.7.2 UTM (UNIVERSAL TRANSVERSE MERCATOR) ZONE: The UTM system divides the world into 60 meridianal zones numbered 1 through 60, beginning at 180 degrees west. Each zone covers a strip 6 degrees wide in longitude. Zone numbers for the Northern and Southern Hemispheres are indicated by positive or negative values respectively. Zone numbering starts at zone 1 from 180 degrees west to 174 degrees west and increases eastward to zone 60 between 174 degrees east to 180 degrees east. |
ZONE |
LOCATION |
07 |
144 to 138 degrees west Longitude |
08 |
138 to 132 degrees west Longitude |
09 |
132 to 126 degrees west Longitude |
10 |
126 to 120 degrees west Longitude |
11 |
120 to 114 degrees west Longitude |
3.7.3 UTM NORTHING: These are quoted as a seven-digit number in metres north of the equator that has a false northing of 0 metres for the northern hemisphere (10000000 metres for the southern hemisphere). Within British Columbia the northing may range from 5300000 to 6653000 metres. The UTM grid is limited to 80 degrees north latitude. 3.7.4 UTM EASTING: These are quoted as a six-digit number in metres. The central meridian of each zone is assigned a false easting of 500000 metres. For example, the central meridian of zone 11 (at 117 degrees west longitude) is assigned the UTM easting of 500000. From west to east, zone 11 contains a range of eastings from about 290000 metres at 120 degrees west longitude to about 725000 metres east at 114 degrees west longitude. |
3.8 ELECTORAL DISTRICT
An electoral district (also known as constitueny, riding, etc.) is a distinct territorial subdivision for holding a separate election for one or more seats in the province of British Columbia. British Columbia has 85 electoral districts that elect MLAs to the Legislative Assembly of British Columbia every election.
NOTE: When coding online this field is automatically populated from the locational data but you must still click "Add" to select.
3.9 FOREST DISTRICT
Forest districts are a system of organization used by the Ministry of Forests for the administration of the province's forest lands.
NOTE: When coding online this field is automatically populated from the locational data but you must still click "Add" to select.
3.10 NTS MAP(*)(R10) (E10)
This is the National Topographic System map sheet designation for the 1:50 000 map sheet on which the mineral occurrence is located. The NTS map sheet number consists of a three-digit number identifying the 1:1 000 000 map area (082, 083, 092, 093, 094, 102, 103, 104 and 114), followed by one alphabetic character from A to P used to designate the appropriate 1:250 000 map sheet. A two-digit number from 01 to 16 designates the appropriate 1:50 000 map sheet and an alphabetic character (E or W) is used to designate the east or west half of the 1:50 000 map in which the specific occurrence is located. The database will accept up to four 1:50 000 scale map sheet designations for each occurrence in the event an occurrence straddles one or more map sheet boundaries. The geographic location must be in the first ranked NTS map sheet.
Example: 082F03E
NOTE: When coding online this field is automatically populated from the locational data but you must still click "Add" to select.
3.11 BCGS MAP (R11) (E11)
The database will accept up to four, 1:20 000 scale map sheet designations for the BC MAP sheet system. The map sheet designation consists of a three-digit number identifying the 1:1 000 000 scale NTS map area (082, 083, 092, 093, 094, 102, 103, 104, and 114), followed by an alphabetic character (A to P) used to designate the appropriate 1:250 000 NTS map sheet. Then, a three-digit number (001 to 100) is used to designate the appropriate 1:20 000 map within the B.C. map sheet system.
Example: 082M053
NOTE: When coding online this field is automatically populated from the locational data but you must still click "Add" to select.
3.12 MINING DIVISION(*)(R09) (E09)
The database will accept up to two Mining Divisions if an occurrence straddles a mining division boundary.
Historically, MINFILE has documented a limited number of occurrences outside the Provincial boundaries, such as in the Alaskan Panhandle, and these have been important in evaluating the metallogeny and economic potential of adjacent areas in British Columbia. The database, therefore, includes pseudo mining divisions for adjacent political jurisdictions and codes for them may be used to identify a selected number of important occurrences.
Refer to Figure 1 for Mining Division boundaries and Figure 2 for general information on Mining Camps in British Columbia.
|
|
NOTE: When coding online this field is automatically populated from the locational data but you must still click "Add" to select.
3.13 ELEVATION(*)(E01)
Elevations are to be quoted in metres above mean sea level. The maximum acceptable value is 6000 metres. Values acquired from accurate location plots on 1:50 000 map sheets are acceptable, but actual survey information is preferred. Negative elevations are not accepted in the database. Right justify entries with no zeros to the left.
NOTE: When coding online this field is automatically populated from the locational data but you must still click "Add" to select.
3.14 FIELD CHECK(*)(E01)
A "Yes" or "No" designation is selected to indicate if this occurrence has been checked in the field, relatively close in time to the research date, by Ministry personnel. A field examination will be more valuable in determining the characteristics of an occurrence rather than a description based only on published data.
3.15 LOCATION CERTAINTY (*)(E01)
The location certainty is either 100 metres, 500 metres, 1 kilometre or 5 kilometres and is used to indicate the relative precision of the location of an occurrence (adit, trench, outcrop, etc.). A well documented, easily located occurrence should have a location certainty of 100 metres, meaning that the occurrence is within 100 metres of the given coordinates. A poorly documented occurrence may be identified by a location accuracy of 1 or 5 kilometres.
3.16 LOCATION COMMENTS - IDENTIFICATION (C01)
Space is provided to enter pertinent information which may be relevant in clarifying material entered in the preceding Identification data fields. Comments should be brief, informative and not merely a duplication of specific data entered in the data fields. An explanation of what exactly is at the location, (e.g., centre of outcrop, location of sample) and the reference must be entered here. Entry allows for unlimited 70-character lines.
3.17 DATE CODED/CODED BY(*)(E01)
This information is automatically tracked when coding on-line. For manual coding, enter the date on which the occurrence is described for the database and the initials (up to 4 characters) of the person compiling the information. The date is entered in a DD/MM/YY format. If nothing is entered in the Date field when the occurrence is created on the computer, it will automatically be set to the current date. See Appendix XIII for initials/names used to date.
3.18 DATE REVISED/REVISED BY(*)(E01)
This information is automatically tracked when using the MINFILE/www online coding card. For manual coding, enter the date on which the occurrence was revised and the initials of the person who compiled the data for the revision. The date is entered in a DD/MM/YY format. If the Date field is left blank on the computer, it will automatically be set to the current date. See Appendix XIII for initials/names used to date.
4.1 Commodities(*)
(R19) (E19)
The commodity fields are used to identify the presence of an element or substance of economic potential or interest. The commodities present in the mineral occurrence are to be listed, in decreasing order of importance, based on economic significance. The commodity may be present in any amount and it is not the prerogative of the individual coder to identify commodities based on economic or quantitative criteria. Commodities produced as an economic product from mining activities are identified in the Production and Inventory portion of the database. The commodities identified in the Inventory/Production portions MUST be included in the commodities list for the occurrence. The database will accept up to 15 different commodities per occurrence. Listed commodities should normally have a corresponding mineral in the significant mineral category.
The search codes for commodities consist of two-character standard elemental chemical symbols or two-character codes made up for industrial minerals and other commodities. Appendix II contains a complete listing of the current commodity search codes. New codes may be added to the master table if required.
Examples: AU=gold, PT=platinum, LS=limestone, JD=jade
Appendix VIII is a glossary of historic and equivalent mineral names and should be used to identify equivalent names or synonyms for the commodities.
4.2 Mineralogy(*)
(R20) (E20a,b)
The mineralogy is described by SIGNIFICANT, ASSOCIATED and ALTERATION minerals. Minerals for each category are entered in decreasing order of significance.
Minerals included in the SIGNIFICANT (economic) category need not be present in economic concentrations but should contain some element of economic interest. ASSOCIATED (gangue) minerals are those present which either form a host matrix to rocks of economic interest or are those related to the occurrence of SIGNIFICANT minerals. ALTERATION minerals are those associated with the alteration process.
The database will accept up to sixteen minerals in the SIGNIFICANT category, and eight minerals each in the ASSOCIATED and ALTERATION categories. All minerals and their context should be identified in the Capsule Geology. Care should be taken not to duplicate minerals by using synonyms (e.g., FLUORSPAR and FLUORITE). See Appendix VIII for a short list of historic and equivalent mineral names and their current aliases; this will be of assistance where older references are consulted. Minerals may occur in more than one category (e.g., pyrite may be included as a Significant and an Alteration mineral if appropriate).
Appendix III is the complete list of mineral search codes which may be used in any of the three categories, SIGNIFICANT (economic), ASSOCIATED (gangue) or ALTERATION minerals. Appendix I contains the recommended derivation technique used to define codes for minerals not already included in the master table. The resulting code must be unique for each mineral. Recommended new codes for minerals are approved and added to the code tables by the database administrator.
4.2.1 COMMENTS - MINERALOGY (C02,C03,C04): Each of the SIGNIFICANT, ASSOCIATED and ALTERATION mineral categories has an area available for text comments pertinent to understanding the mineralogy. Unlimited 70-character lines are provided for Significant, Associated, and Alteration comments.
4.3 Alteration Type
(R21) (E21)
This field indicates the presence of various alteration types based on the alteration and gangue mineralogy identified. A maximum of five alteration types may be input per occurrence from the following table:
The indicated mineralogy is intended as a general guide, not as a geologically comprehensive definition. Alteration types may be gradational from one to another.
ALTERATION TYPE |
CODE | ALTERATION MINERALOGY |
ALBITIC (SODIUM SILICATE) | ALBI |
Introduction of, or replacement by, ALBITE, usually replacing a more calcic plagioclase. It may result from strong sodium metasomatism and addition of sodium to the original rock or it may result by leaching of other cations in the rock and apparent enrichment of sodium. Typical mineral assemblages are ALBITE, PARAGONITE (sodium-rich sericite), CHLORITE, and QUARTZ; generally accompanied by ORTHOCLASE, ANKERITE, or other carbonate minerals. |
ALUNITIC | ALUN |
Introduction of, or replacement by, ALUNITE. This alteration is caused by extreme hydrolytic leaching of wallrocks in the presence of sulphate. The conditions are oxidizing with an abundance of sulphate ions. The most common mineral assemblage is ALUNITE with some form of silica: QUARTZ, CHALCEDONY, CRISTOBALITE, TRIDYMITE, or OPAL. Other minerals present commonly include KAOLINITE, SERICITE, DIASPORE, BARITE, JAROSITE, RUTILE, ZUNYITE, PYRITE, and HEMATITE. |
ARGILLIC | ARGI |
Intermediate argillic alteration is the replacement or alteration of feldspars to form predominantly clay minerals. These include the KAOLINITE group: DICKITE, KAOLINITE, HALLOYSITE, and METAHALLOYSITE; the SMECTITE (MONTMORILLONITE) group; the ILLITE group; and the amorphous clays (ALLOPHANE). Mineral assemblages characteristic of advanced argillic alteration caused by hydrothermal solutions at low and moderate temperatures are dominated by KAOLINITE group clay minerals. DICKITE, KAOLINITE, DIASPORE, and PYROPHYLLITE may occur with SERICITE, QUARTZ, ALUNITE, PYRITE, TOURMALINE, TOPAZ, ZUNYITE, and AMORPHOUS CLAYS (ALLOPHANE). |
BIOTITE | BIOT |
Introduction of, or replacement by, BIOTITE. |
CARBONATE | CARB |
Introduction of, or replacement by, CARBONATES. Magnesium, iron, calcium, and manganese carbonates are common. These are CALCITE, DOLOMITE, ANKERITE, and SIDERITE. |
CHLORITIC | CLOR |
The replacement by, conversion into, or introduction of CHLORITE. This alteration may result from a number of disparate metasomatic processes. Mineral assemblages comprise CHLORITE, with subordinate SERICITE, QUARTZ, and PYRITE. |
DEUTERIC (AUTOMETASOMATISM) | DEUT |
A process involving reactions between primary magmatic minerals and the water-rich solutions that separate from the same body of magma at a late stage in its cooling history. These processes may result in SILICIFICATION, SODIUM SILICATE (ALBITIZATION), POTASSIUM SILICATE, TOURMALINIZATION and GREISENIZATION as pervasive, selectively pervasive, cavity filling and/or vein-controlled modes of alteration. |
EPIDOTE | EPID |
The hydrothermal introduction of EPIDOTE into rocks or the alteration of rocks in which plagioclase feldspar is albitized, freeing the anorthite molecule for the formation of EPIDOTE and ZOISITE, often accompanied by chloritization. These processes are characteristically associated with metamorphism. |
FENITIC | FENT |
Widespread alkali metasomatism of quartzofeldspathic country rocks in the environs of carbonatite complexes and/or alkalic igneous rocks. FENITES are characterized by FELDSPATHOIDS, and ALKALI FELDSPARS (POTASH FELDSPAR, ALBITE), PYROXENES (AEGERINE, AEGERINE-AUGITE), and AMPHIBOLES (RIEBECKITE-ARFVEDSONITE series). |
GREISEN | GRSN |
A type of alteration whose minerals are enriched in fluorine, boron, and the alkali metals (Na, K, and Li). The characteristic minerals include TOURMALINE, TOPAZ, MUSCOVITE, ZINNWALDITE, FLUORITE, ALKALI FELDSPARS, and/or KAOLINITE. |
HEMATITE | HEMT |
HEMATITE is the principal mineral product and varieties may be granular, specular, or more rarely, earthy. The latter is generally of supergene origin and is associated with clay minerals. The style of hematite alteration is pervasive, selectively pervasive, and vein-controlled. |
LEACHING | LECH |
The separation, selective removal, or dissolving-out of soluble constituents from a rock, soil, or orebody by the natural action of percolating water. |
OXIDATION | OXID |
A process whereby an area is modified by surface waters, and/or reaction with oxygen (e.g., sulphides altered to oxides and carbonates). A GOSSAN represents an oxidized zone formed by the oxidation of sulphides and the leaching-out of the sulphur and most metals, leaving hydrated iron oxides and rarely sulphates. Minerals include LIMONITE, HEMATITE, and others. |
POTASSIUM SILICATE (POTASSIC) | KSPA |
Hydrothermal alteration resulting from potassium metasomatism, commonly accompanied in calcalkaline rocks by removal of calcium and sodium. Characteristic major minerals are POTASSIUM FELDSPARS (ADULARIA, ORTHOCLASE, MICROCLINE), BIOTITE or CHLORITE, SERICITE, and QUARTZ, with common ALBITE, ANHYDRITE, FE-MG CARBONATE, and APATITE. |
PROPYLITIC | PROP |
The result of low pressure-temperature alteration. The propylitic assemblage consists of EPIDOTE, CHLORITE, ZOISITE, CLINOZOISITE, SERICITE, MG-FE-CA CARBONATES, PYRITE, and sometimes ALBITE-ORTHOCLASE, all involved in partial replacement of wallrock minerals. HEMATITE, JAROSITE, and GOETHITE are also common. |
PYRITE | PYRT |
Introduction of, or replacement by, PYRITE. A common process of hydrothermal alteration. |
QUARTZ CARBONATE | QZCA |
LISTWANITE. A mineralogic assemblage that results from the carbonatization of serpentinized ultramafic rocks. A distinctive alteration suite consisting of green chromium-bearing mica (MARIPOSITE, FUCHSITE) with QUARTZ, CARBONATE, LIMONITE and MAGNESITE. |
RODINGITIZATION | RDGZ |
A metasomatic alteration of a protolith during serpentinization. RODINGITE is a product of this process and is a massive dense calcsilicate rock typically rich in GROSSULAR GARNET and DIOPSIDE. Accessory minerals include combinations of IDOCRASE, CLINOZOISITE, ZOISITE, VESUVIANITE, CHLORITE, PREHNITE, and SERPENTINE. |
SERICITIC (PHYLLIC) | SERI |
A very abundant and widespread alteration with a characteristic mineral assemblage of SERICITE, QUARTZ, and PYRITE. Sericitization is often the alteration type most closely associated, spatially, with sulphide ore and is a hydrothermal, deuteric, or metamorphic process involving the introduction of, alteration to, or replacement by SERICITIC MUSCOVITE. |
SERPENTINIZATION | SERP |
The process of hydrothermal alteration by which magnesium-rich silicate minerals (e.g., olivine, pyroxenes, and/or amphiboles in dunites, peridotites, and/or other ultramafic rocks) are converted into or replaced by serpentine minerals. Minerals include SERPENTINE, CHRYSOTILE, BRUCITE, TALC, MAGNETITE, and MAGNESITE (CARBONATES). |
SILICIFICATION | SILI |
The introduction of, or replacement by, SILICA, generally resulting in the formation of fine-grained QUARTZ, CHALCEDONY, or OPALINE SILICA (OPAL), which may fill pores and replace existing minerals. |
SKARN (SILICATION) | SKRN |
Silication (silicate alteration) is also known as pyrometasomatic, contact metasomatic, and igneous metamorphic mineralization. The process is one of hydrothermal alteration of carbonate rocks. The altered rocks resulting from the process are called SKARNS or TACTITES. Not all skarn protoliths are carbonate rocks; volcanic and plutonic igneous rocks and aluminosilicate sedimentary rocks may be silicated if their Ca, Mg, and/or CO2 contents are sufficiently high. A wide variety of silicate minerals occur with iron oxides and/or sulphides and with a variety of other minerals of economic interest. Common minerals in the silicated rocks include: GARNETS: ANDRADITE and GROSSULARITE (ALMANDINE is more rare); EPIDOTE and CLINOZOISITE; DIOPSIDE-HEDENBERGITES; IDOCRASE (VESUVIANITE); WOLLASTONITE; TREMOLITE-ACTINOLITE; BIOTITE-PHLOGOPITE; CHLORITES; POTASSIUM and PLAGIOCLASE FELDSPARS. |
TALC | TALC |
TALC forms as an alteration product of magnesium silicates such as olivine, pyroxenes and amphiboles, or by the reaction between magnesium and silica. Minerals commonly associated with TALC are CHLORITE, DOLOMITE (CARBONATE), TREMOLITE, ANTHOPHYLLITE, ANTIGORITE, SERPENTINE, MAGNESITE, MAGNETITE, and CHROMITE. Common geologic settings for TALC formation are 1) within regionally metamorphosed and/or hydrothermally altered ultramafic rocks, 2) in association with schists, generally chloritic, 3) with dolomite and magnesite, or 4) with mafic volcanics. |
TOURMALINIZATION | TURM |
Introduction of, or replacement by, TOURMALINE as pervasive, selectively pervasive, and vein-controlled alteration. |
ZEOLITIC | ZEOL |
Introduction of, alteration to, or replacement by, a mineral or minerals which have ZEOLITES as distinctive, though not necessarily abundant, gangue minerals. Zeolitization results from the passage of relatively low-temperature, near-neutral, hydrothermal solutions that cause recombination of sodium, calcium, and/or potassium in the wallrocks. ZEOLITES most commonly occur as alteration products of volcanic glass and calcium-rich plagioclase feldspar and are associated with alteration minerals which include ADULARIA, PREHNITE, PUMPELLYITE, and minerals of the propylitic facies, particularly EPIDOTE, ALBITE, and CARBONATES. The most common ZEOLITES include CLINOPTILOLITE, MORDENITE, ANALCIME, HEULANDITE, LAUMONTITE, and WAIRAKITE. |
UNKNOWN | **** | Insufficient information to allow alteration type. |
4.4 Deposit Character(*)
(R05) (E05)
The deposit character describes the style of the mineralization or the significant geological feature(s) associated with the mineralized hostrocks. The database will accept up to four Deposit Characters for each occurrence and these are ranked in order of importance. This field is mandatory and at least one characteristic must be identified.
A complete description of the characteristics of an occurrence should be incorporated in the Capsule Geology.
DEPOSIT CHARACTER |
CODE | MINFILE DEFINITION |
Vein | 01 |
Occurrences in which mineralization occurs within one or more simple or complex veins, or vein sets which may be associated with fault or shear zones. |
Stockwork | 02 |
Occurrences in which mineralization occurs within a network of veinlets in the country rock. |
Breccia | 03 |
Mineral occurrences hosted and/or controlled by the angular, broken rock fragments held together by a mineral cement or in a fine-grained matrix. The breccia may be sedimentary, igneous or tectonic in origin. |
Pipe | 04 |
Mineralization in pipes which are generally funnel shaped or cylindrical,, particularly mineralized breccia pipes, diatremes, etc. |
Unconsolidated | 05 |
Occurrences within material whose particles are not cemented together. May occur at surface or at depth but is usually assumed to be surficial material. |
Podiform | 06 |
Mineralization in a lenticular or rodlike shape with either diffuse or sharp boundaries. May vary from a few centimetres to tens of metres in size. |
Layered | 07 |
Mineralization within a tabular succession with different components of igneous, sedimentary or metamorphic rocks which can be identified by mineralogical, textural or structural criteria. |
Stratabound | 08 |
General term for mineralization confined by physical or chemical controls to specific stratigraphic units. Such deposits can include veins, lenses, layers, etc. which may or may not be transgressive relative to the enclosing stratigraphy. |
Stratiform | 09 |
Specific term used for mineralization which is generally sheet-like in form and concordant to layering in enclosing rocks. Generally applied to deposits such as sedimentary exhalative (SEDEX) and volcanogenic massive sulphide (VMS) deposits. |
Concordant | 10 |
Mineralization which is structurally conformable with the major mineralogical textural or structural fabric of the hostrock. |
Discordant | 11 |
Mineral occurrences which are not parallel to the major mineralogical, textural or structural fabric of the hostrock. |
Massive | 12 |
Mineralization which constitutes a larger percentage of the rock volume than the matrix or gangue minerals. |
Disseminated | 13 |
Mineralization which occurs as scattered grains in the hostrock. There is no genetic connotation. |
Shear | 14 |
A tabular zone of rock that has been crushed and brecciated by many parallel fractures due to shear strain. Such an area is often mineralized by ore-forming solutions. |
Unknown | ** |
Insufficient information to allow classification. |
4.5 Deposit Classification(*)
(R07) (E07)
Deposit classification is a general interpretation of the origin of an occurrence based on the best available geological data. The database will accept up to four classifications for any given occurrence.
This field is mandatory and at least one classification must be assigned. The coding of deposit classification should be ranked, that is, provide the order in which the classifications are to be entered. The ranked order will be reflected in the printout.
A genetic description should be incorporated in the Capsule Geology and should indicate the geological evidence for the interpretations.
DEPOSIT CLASSIFICATION |
CODE | MINFILE DEFINITION | ||||
Replacement | 01 |
Deposits form by a solution and deposition mechanism by which new (ore) minerals grow and replace existing minerals. Usually used in the context of ore minerals replacing carbonate minerals or other soluble rock. |
||||
Magmatic | 02 |
Mineralization is directly related to a crystallization process in magma, exclusive of pegmatites. The deposits may constitute the entire rock mass, form a compositional layer, or occur as disseminated minerals in an igneous rock. |
||||
Volcanogenic | 03 |
Deposits form by processes directly related with volcanism. They are considered to have been produced through volcanic agencies and are demonstrably associated with volcanic phenomena. |
||||
Sedimentary | 04 |
Stratiform and/or stratabound deposits form in clastic and carbonate sequences with no strong volcanic association. |
||||
Syngenetic | 05 |
Deposits form contemporaneously with, and by essentially the same processes as, the enclosing rock. |
||||
Epigenetic | 06 |
Deposits form later than the enclosing rock. |
||||
Hydrothermal | 07 |
Deposits form by precipitation of ore and gangue minerals from heated metalliferous, hydrous fluids in fractures, faults, breccia openings or other spaces, by replacement or open-space filling. Fluid temperatures may range from 50 to 700 degrees Celsius, but are generally below 400 degrees Celsius. |
||||
Residual | 08 |
Deposits form by mechanical concentration or chemical alteration in a zone of weathering (e.g., laterite, limonite, clay, etc.) |
||||
Porphyry | 09 |
Mineralization is spatially and genetically related to igneous intrusions which are generally felsic but range widely in composition. The intrusions are epizonal and invariably porphyritic. Multiple intrusive events, dike swarms, and intrusive breccias are characteristic. Hosts for the intrusions can be any rock type, and range from unrelated country rocks to comagmatic extrusive equivalents. Mineralization and alteration form large zones that exhibit lateral and vertical zoning. Economic minerals occur throughout a large volume of rock as disseminated grains, in stockworks, and veins. |
||||
Igneous-contact | 10 |
Mineralization is directly related to contact metamorphic or metasomatic alteration caused by the intrusion of igneous rock. Skarn may be considered a more specific division of this category. |
||||
Skarn | 11 |
Deposits are related to pyrometasomatic, contact metasomatic, and igneous metamorphic processes. Skarn protoliths are generally carbonate rocks but volcanic, igneous and aluminosilicate sedimentary rocks can also be hosts. A wide variety of silicate minerals occur with iron oxides and/or sulphides and with a variety of other minerals of economic interest. |
||||
Pegmatite | 12 |
Mineralization is directly associated with the formation of pegmatites. Pegmatites represent the last and most hydrous portion of a magma to crystallize and are found as irregular dikes, lenses, or veins, especially at the margins of batholiths. Their composition may be simple or complex and may include rare minerals rich in such elements as lithium, boron, fluorine, niobium, tantalum, uranium, and rare earths. |
||||
Placer | 13 |
Deposits form in unconsolidated surficial material as a result of mechanical, chemical, or residual weathering processes. |
||||
Evaporite | 14 |
Deposits form by the deposition of soluble components caused generally by evaporation in salinas (salt lakes) and sabkhas (low-lying salt flats) and by precipitation from subsurface brines in both marginal marine and inland desert basins. Principal ore minerals include anhydrite, halite, gypsum, sodium sulphate, potash, and others. |
||||
Exhalative | 15 |
Deposits form from the issuance of volcanic, sedimentary or igneous derived fluids onto or very close to the sea floor. |
||||
Diatreme | 16 |
Mineralization occurs within, or controlled by, a breccia-filled volcanic pipe formed by gaseous explosion (e.g., kimberlite). |
||||
Epithermal | 17 |
Deposits form at high structural levels, at some distance from intrusions commonly in volcanic terranes. Mineralization occurs at surface to a maximum depth of approximately 1000 metres at temperatures generally less than 285 degrees Celsius. Veins are the most common ore host but breccia zones, stockworks, and fine grained bedding replacement zones also occur. Ore and associated minerals are deposited dominantly as open-space filling with banded, crustiform, vuggy, drusy, colloform, and cockscomb textures. Repeated cycles of mineral deposition are evident. |
||||
Mesothermal | 18 |
Deposits form at considerable depth (1 to 5 kilometres) from tectonically driven, large scale, deeply circulating fluid systems in the temperature range of 200 to 300 degrees Celsius. They are structurally controlled, multiple, massive to ribboned vein systems with considerable lateral and vertical extent, predominantly in island arc and sedimentary rocks, and remnant slices of oceanic material. |
||||
Fossil Fuel | 19 |
This term identifies any hydrocarbon that may be used for fuel. Includes, but is not limited to, petroleum, natural gas, coal, peat, and oil shale. |
||||
Metamorphic | 20 |
Minerals develop by an isochemical process when no introduction of material from an external source takes place (e.g., kyanite, garnet, etc.). |
||||
Industrial Mineral | 21 |
Industrial minerals, including stone and rocks, may be defined as those naturally occurring materials used to build structures or supply products that are useful to an industrialized society. Since industrial minerals exclude the ores of metals, they have been called the "nonmetallics". Gems and art objects are valuable for their intrinsic properties, but because they are not used in the sense of structures or products, they are not included. Industrial-grade diamonds and semiprecious minerals, however, are useful to industry because of their hardness and are included under abrasives. Listed below are commodities which are considered by MINFILE to be Industrial Minerals.
|
||||
Unknown | ** | There is insufficient information to define a deposit classification. |
4.6 Deposit Type
(R30) (E30)
Deposit types are based on the British Columbia Mineral Deposit Profiles of the BC Geological Survey. Please refer to this link for a listing of all deposit types.
The Deposit type is an attempt to define a deposit based on its characteristics and includes/implies an explanation of these characteristics in terms of geological processes. The database will accept up to four Deposit types for any given occurrence.
This field is optional since there is often not enough information to define many occurrences as a specific deposit type. The coding of deposit type is ranked, using the most important type as the first ranked. The ranked order will be reflected in the printout.
A thorough deposit description should be incorporated in the Capsule Geology and should indicate the geological evidence for any and all interpretations.
4.7 Age of Mineralization
(R24) (E24)
The geologic age of the mineralization is indicated with an appropriate era, period or epoch. A complete listing of acceptable codes is provided in Appendix V Stratigraphic Age Codes and is available for online coding with the list box. This is an optional field and should be used only if substantial evidence supports the data. This evidence must be stated and referenced in the Structural and Age Comment field and in the Capsule Geology. If the age of mineralization is known then the Isotopic age and Material Dated fields should also be filled in. When coding via the MINFILE/www online coding card select the age of mineralization from the list box.
4.8 Isotopic Age
(of mineralization) (R22)
This is a twenty-character, free-format field for the age of mineralization in millions (Ma) or billions (Ga) of years. Associated age dating errors should be included (e.g., 48.7 +/- 1.2 Ma). The Structural and Age Comment field must identify the reference used.
References:
Okulitch, A.V. (1999): Geological Time Chart 1999, Geological Survey of Canada, Open File 3040
Grant, Brian (2003): Geoscience Reporting Guidelines
4.9 Material Dated
(R22)
This is a thirty-character, free-format field to identify the actual material(s) used in the dating procedure (e.g., biotite, hornblende, fossil, etc.). The information is used to support the Isotopic Age field.
4.10 Dating Method
(R22) (E22)
The dating method used must be identified for information entered in the Isotopic Age field. Valid dating methods are listed in the adjacent table:
CODE | DATING METHOD |
01 | Lead/Lead |
02 | Rubidium/Strontium |
03 | Fossil |
04 | Carbon 14 |
05 | Uranium/Thorium |
06 | Potassium/Argon |
07 | Zircon |
08 | Fission Track |
09 | Whole Rock |
10 | Uranium/Lead |
11 | Argon/Argon |
** | Unknown |
4.11 Deposit Configuration
(E01)
Three optional fields are available to identify the shape, structural character and size of a mineral occurrence. These fields are usually reserved for those occurrences which have received sufficient exploration and development to have outlined a deposit.
4.11.1 SHAPE OF DEPOSIT (R06) (E06): An appropriate description of the shape of the deposit is selected from the list below. The field is used only if sufficient information is available to identify the shape. The shape should reflect gross dimensions and discount minor irregularities. The coding geologist should identify the shape of the mass of the ore minerals present and not just the host setting. For example, mineralization within a vein or fault may be cylindrical or bladed and not necessarily tabular. Descriptions of the shape of a deposit are defined as follows:
4.11.2 SHAPE MODIFIER (R04) (E04): A structural modifier is used to support the data in the deposit shape field. This field cannot be used unless deposit shape is identified. The database will accept up to two modifiers.
SHAPE MODIFIER |
CODE |
Folded | 1 |
Faulted | 2 |
Fractured | 3 |
Sheared | 4 |
Other (specify in comment field) | 5 |
Unknown |
* |
4.11.3 DEPOSIT DIMENSION (E01): The deposit dimensions are defined in metres, in a sequence of maximum to minimum dimensions (Example: 376 x 230 x 4). Each of the three dimension fields will accept up to four digits.
4.12 Attitude
(E01)
Specific directional measurements may be entered which are pertinent to understanding the orientation and/or setting of a mineral occurrence. One measurement for each of strike/dip and trend/plunge may be entered per occurrence.
4.13 Comments - Structural, Significant, Associated and Alteration
(C05)
An unlimited number of 70-character lines of text may be added in the structural comment field to clarify structural or age dating information. If age dating information is included then the reference should be stated here. Also, when dimensions and attitude are given, the specific ore body that these refer to should be identified. Optional text comments pertinent to understanding the mineralogy can be added to the significant, associated and alteration comment fields.
5.1 Dominant Hostrock(*)
(R03) (E03)
This is a mandatory field identifying the most significant hostrock type. The hostrock is normally defined as the type of rock in which the mineralization occurs. Only one dominant hostrock is accepted by the system.
CODE | HOSTROCK TYPE |
1 | Sedimentary |
2 | Plutonic |
3 | Volcanic |
4 | Metasedimentary |
5 | Metaplutonic |
6 | Metavolcanic |
7 | Metamorphic |
* | Unknown |
5.2 Formal / Informal Host(*)
(R23) (E23)
Each MINFILE occurrence requires at least one FORMAL or INFORMAL HOSTROCK. Both categories may be entered for any given occurrence; the system will accept a maximum of two FORMAL (groups and formations) and two INFORMAL (plutonic, metamorphic, etc.) hostrocks. The HOST units are entered into the database using the Group, Formation, Igneous-Metamorphic and Informal host names in Appendix IV. New names and their corresponding codes will be added to the master table periodically as required. The hostrock name(s) must be written out in full on the coding card.
FORMAL hostrocks are those with an officially established Group, Formation, or other stratigraphic name. INFORMAL hostrocks include formal names for igneous and metamorphic units as well as informal names or general terms which are not part of the stratigraphic nomenclature (e.g., plateau basalt).
Group and Formation names are entered in the FORMAL HOST category. Informal, igneous, or metamorphic units must be entered in the INFORMAL HOST category.
It is imperative that both the Group and corresponding Formation are identified. If an occurrence is hosted by the Telkwa Formation, the coding must identify it as part of the Hazelton Group. UNNAMED/UNKNOWN may be used in either category. If a Group or Formation is known but the corresponding Formation or Group is not identified then UNDEFINED GROUP or UNDEFINED FORMATION should be used to maintain data relations in the hostrock field.
In the MINFILE system, a stratigraphic unit identified as a member is assigned a code in the Formation category. Rock units identified as a Series or Supergroup are assigned codes in the Group category. The formal/informal host(s) along with its stratigraphic age(s) must be included in the Capsule Geology description.
5.3 Stratigraphic Age(*)
(R23)(E24)
The stratigraphic age is a mandatory field identifying the geological age of the hostrock in terms of era, period or epoch. Appropriate ages are the same as for "Age of Mineralization" listed in Appendix V. Both FORMAL and INFORMAL HOST categories must have relevant ages.
Where only a stratigraphic age is identified it is not necessary to complete the MATERIAL DATED and the DATING METHOD fields. The most specific age information available should be used e.g., Hazelton Group, Mount Dilworth Formation date should be Lower Jurassic even though the Hazelton Group is Upper Triassic to Middle Jurassic in age.
5.4 Isotopic Age
(of Hostrocks) (R23)
Isotopic Age is a 20-character, free-format field for a specific hostrock age, quoted in millions (Ma) or billions (Ga) of years. Associated age dating errors should be included (e.g., 48.7 Ma +/- 1.2 Ma). A Reference should be included in the Hostrock Comment field. The stratigraphic age and the isotopic age must correspond.
References:
Okulitch, A.V. (1999): Geological Time Chart 1999, Geological Survey of Canada, Open File 3040Grant, Brian (2003): Geoscience Reporting Guidelines
5.5 Material Dated
(R23)
When an ISOTOPIC age is given, the material used in the dating procedure must be identified. This is a 30-character, free-format field, listing material(s) used in the age determination (e.g., biotite, zircon, fossil, etc.).
5.6 Dating Method
(R23) (E22)
The dating method used to determine the ISOTOPIC age must be identified. Refer to the Dating Method table located within the Mineral Occurrence section for appropriate dating methods.
5.7 Rock Type / Lithology(*)
(R25) (E25) (E26)
At least one Rock Type/Lithology must be entered for each occurrence. A total of ten different rock types and up to three modifiers for each rock type may be identified for each occurrence. Appendix III is a listing of current rock names and modifiers. This table will be updated periodically as required. The rock types that host the significant mineralization should be listed in their order of importance and should correspond with the Dominant Hostrock category. Other lithologies identified should correspond with the FORMAL and INFORMAL hostrocks.
All rock types plus modifiers identified should be written out in full in the lithology field on the coding card. Care should be taken not to duplicate rock types by using synonyms (e.g., diabase dike and diorite dike). The Rock Type(s)/Lithologies must be included in the Capsule Geology description.
Example:
MODIFIER SEARCH CODE(S) | ROCK TYPE SEARCH CODE | ROCK TYPE / LITHOLOGY |
---|---|---|
BSLT | Basalt | |
ALKL | BSLT | Alkali Basalt |
QRTZ FLDP | PRPR | Quartz Feldspar Porphyry |
5.8 Comments - Hostrock
(C06)
Text may be added to the comment field to clarify hostrock or age dating information.
6.1 Tectonic Belts(*)
Panel Body(R12) (E12)
NOTE: When coding online this field is automatically populated from the location data.
Tectonic belt is a mandatory field and only one may be input for any given occurrence. The Province of British Columbia contains five distinct tectonic belts listed in the adjacent table and the figure below (click to enlarge):
TECTONIC BELT | CODE |
Insular | IN |
Coast | CC |
Intermontane | IM |
Omineca | OM |
Foreland | EA |
Unknown | ** |
Descriptions of the Tectonic Belts can be found at: Cordilleran Geoscience
6.2 Terrane(*)
(R13) (E13)
A number of lithotectonic terranes have been identified in the Cordillera. Each terrane preserves a geological record different from those of its neighbours or from rocks deposited on or adjacent to cratonic North America. Terrane boundaries are discontinuities, generally major faults, across which the geological record changes abruptly. Many terranes are displaced in the sense that their original paleogeographic positions relative to the North American Craton are uncertain.
Thirty-nine terranes or equivalents have been identified within British Columbia for the requirements of the MINFILE database and these are listed in Appendix VI. The database will accept up to two terranes for any given occurrence.
For terranes use the compilation from J.O Wheeler et. al. (Wheeler, J.O., Brookfield, A.J., Gabrielse, H., Monger, J.W.H., Tipper, H.W. and Woodsworth, G.J. (comp.), 1991: Terrane Map of the Canadian Cordillera; Geological Survey of Canada, Map 1713A, scale 1:2 000 000). A comprehensive description of each terrane from the previous compilation by J.O Wheeler et. al. is also included in Appendix VI. For a more detailed description refer to Monger, J.W.H. & Berg, H.C. Part B of U.S.G.S. Open File Report 84-523 and G.S.C. Preliminary Manuscript Map "Cordilleran Orogen of Canada" prepared for DNAG Volume G6.
For information on tectonic assemblages refer to Wheeler, J.O. and McFeely, P. (comp.), 1991: Tectonic Assemblage Map of the Canadian Cordillera and adjacent parts of the United States of America; Geological Survey of Canada, Map 1712A, scale 1:2 000 000.
An updated terrane map is available from BCGS GeoFile 2011-11: A Digital Atlas of Terranes for the Northern Cordillera.
6.3 Physiographic Area(*)
(R14) (E14)
NOTE: When coding online this field is automatically populated from the locational data but you must still click "Add" to select.
The Province of British Columbia has been divided into physiographic areas according to distinctive physical characteristics, reflecting in part the gross underlying geological character (e.g., plateaus, trenches, mountain ranges, etc.) The boundaries of each physiographic area are derived from GSC Map 1701A "Physiographic Map of the Canadian Cordillera", by Mathews, W.H. (1986).
Only one physiographic area can be input for each occurrence.
The physiographic areas are listed in the following table:
|
|
6.4 Metamorphism
6.4.1 Type (R15) (E15) - The type of metamorphism associated with the occurrence is identified. This is a mandatory field if the Relationship and/or Grade fields are used. One or two types may be entered if appropriate.
TYPE | CODE |
Contact | 1 |
Regional | 2 |
Unknown | * |
6.4.2 Relationship (R17) (E17) - The age-relationship of metamorphism to hostrock mineralization is indicated here. Up to three categories may be selected if appropriate. This is a mandatory field if "type" field in 6.4.1 is populated.
RELATIONSHIP | CODE |
Pre-mineralization | 1 |
Syn-mineralization | 2 |
Post-mineralization | 3 |
Unknown | * |
6.4.3 Metamorphic Grade (R16) (E16) - The database will accept a maximum of two metamorphic grades and/or coal ranks. This is a mandatory field if "type" field in 6.4.1 is populated.
GRADE/RANK | CODE |
Zeolite | ZL |
Greenschist | GS |
Amphibolite | AM |
Hornfels | HF |
Granulite | GL |
Blueschist | BS |
Eclogite | EC |
GRADE/RANK | CODE |
Anthracite | AN |
Semi-Anthracite | SA |
Low-Volatile Bituminous | LV |
High-Volatile Bituminous | HV |
Medium-Volatile Bituminous | MV |
Sub- Bituminous | SB |
Lignite | LI |
Unknown | ** |
6.5 Comment - Geological Setting
(C07)
Enter text to comment on the overall geological setting of the occurrence.
(C08)
Type, or 'copy and paste' capsule geology comments into this field. This is a mandatory detailed deposit description incorporating all the data in the coded fields and including more specific information on the geological setting and the controls of economic mineralization. Essentially there is no limit to the length of the description but one should consider that MINFILE is intended as a summary of geological characteristics, not a definitive thesis on any given occurrence. A five-space indent begins every paragraph. Tables should have lines before and after to signal a change to fixed font when data is exported to the CD-ROM or Web.
As a general rule the following types of information should be included in every capsule geology:
Based on feedback from users, the BC Geological Survey is considering a more structured format which includes proper attribution of contained data within the capsule geology. If consistent headings are used within the capsule geology, then it would be easier and faster for users to locate information. Please keep this format in mind when coding a mineral occurrence or editing an existing one.
For example:
Refer to Appendix X for further coding and editing guidelines.
The coder must insure that all significant data included in the data fields (particularly for Formal/Informal Host, Rock Types, Minerals, Commodities and the Deposit Character and Classification) are included and discussed within the text of the Capsule Geology. Likewise, all geological data appearing in the text must be included in the appropriate data fields.
Online help is also available from the MINFILE/www online coding card.
The MINFILE bibliography is intended to identify all significant references for a deposit. References may be typed or use 'copy and paste' to input text into this field. In general, references are to be quoted in summary format, identifying publication, year and page. References of particular value in identifying or describing a deposit should be marked with an asterisk (*).
Standard referencing techniques should be used for publications or references which are not included in the list of abbreviations below or which do not fit in a summary format. When listing the appropriate references, the coding geologist should attempt to list them in the same order as outlined in the listing of abbreviated codes.
Example of a standard reference:
Price, R.A. (1962): Fernie Map-area, East Half, Alberta and British Columbia, Geological Survey of Canada, Paper 61-24.
The corresponding MINFILE abbreviated reference is:
"GSC P 61-24"
"Property File" alone is not identified as a reference. The specific document used should be identified as the reference source and should be listed under the heading of "EMPR PF" which indicates that this item is found within the Ministry's Property File. Each item in the list is separated by a semicolon.
For example:
EMPR PF (Total Energold Ltd., Annual Report, 1989; Cassiar Mining Corp., maps and notes, 1987).
The following formats should be followed in coding references:
A listing of abbreviated codes for selected publications commonly referred to in MINFILE is as follows:
AEROMAG MAP | Aeromagnetic Map |
AR | Minister of Mines Annual Report (1874-1968) (1969-1979 includes metal production tables) |
ASS RPT | Assessment Report (fiche and hard copy reports in regional offices and Victoria Library) |
BC METAL | File containing production data from Land Management and Policy Branch (now Minerals, Oil and Gas Branch, Resource Development Division) |
BULL | Bulletin |
COAL ASS RPT | Coal Assessment Report |
COMM FILE | Commodity File |
ENG INSP | Engineering and Inspection Branch (Abandoned Mines Plans Fiche and MDRP Reports) - see LMP |
EXPL | Exploration in British Columbia (1975-1997); Exploration and Mining in British Columbia (1998-current) |
EXPLORE BC | EXPLORE BC Program (1994-1996) (files: GMIP - Grassroots Mineral Incentive Program; MEIP - Mineral Exploration Incentive Program; AMEP - Accelerated Mine Exploration Program) |
FIELDWORK | Fieldwork, year, page |
GEM | Geology, Exploration and Mining in British Columbia (1969-74) |
GEOLOGY | Geology in British Columbia |
GEOS MAP | Geoscience Map |
GF | GeoFile |
IND MIN FILE | Industrial Minerals File |
INDEX | Index to Minister of Mines Annual Reports (e.g. INDEX 3 (to 1953); INDEX 4 (1954 to 1964)) |
INF CIRC | Information Circular |
IR | Information Report (Summary of Operations) (1980-1984) |
LMP | Land Management and Policy Branch (Abandoned Mines Plans Fiche) - formerly ENG INSP; now Mines Branch |
MAP | Map (see also AEROMAG MAP, GEOS MAP, MIN POT MAP, PRELIM MAP) |
MDAP | Mine Development Assessment Process (available in Ministry library) |
MEIP | Mineral Exploration Incentive Program (1978-1979) |
MER | Mineral Exploration Review (see also Information Circulars circa 1983-1 to present) |
MINING | Mining in British Columbia (1975-1980; 1981-1985; 1986-1987; 1988) |
MIN POT MAP | Mineral Potential Map |
MIN STATS | B.C. Mineral Statistics Annual Summary Tables (1985-1990); B.C. Mineral Output (Statistical Output) (1990 to present) |
MR MAP | Mineral Reference Map (showing surveyed claims) |
NGR | National Geochemical Reconnaissance (1978 and before) |
OF | Open File |
P | Paper |
PAP | Prospectors Assistance Program (EXPLORE BC Program (1994-1996)) |
PERS COMM | Personal Communication or Office Memos |
PF | Property File (located in Victoria Library and online) |
PFD | Property File Document number |
PRELIM MAP | Preliminary Map |
RGS | Regional Geochemical Survey (1978-current) |
AEROMAG MAP | Aeromagnetic Map |
MIN BULL MR # | Mineral Bulletin MR # (e.g. 166; 181 (1976, 1977, 1978); 198 (1983); 223 (1989)) |
MP COMM FILE | Commodity File |
MP CORPFILE | Corporation File (similar to our Property Files, but located in Ottawa) |
MP RESFILE | Reserves File (located in Ottawa) |
MRI | Mineral Policy Sector Internal Report (e.g. MRI 80/7 (1980)) |
ANN RPT | Annual Report |
BULL | Bulletin |
CAT | Catalogues |
EC GEOL | Economic Geology Report |
GB | Guidebooks |
MAP | Map (examples of types: 12-1975, 1978-1, 1203A, 4596G) |
MB | Museum Bulletins |
MEM | Memoir |
MISC RPT | Miscellaneous Reports |
OF | Open File |
P | Paper |
PROG RPT | Progress Report |
SUM RPT | Summary Report |
IR | Investigation Report |
RPT | Publications |
TB | Technical Bulletin |
AAPG | American Association of Petroleum Geologists Bulletin |
AEG | The Association of Exploration Geochemists |
Air Photo | Air Photograph |
ARMS | Aggregate Resource Management System (Ministry of Transportation and Highways) |
CAN ROCKHOUND | The Canadian Rockhound |
CIM | Canadian Institute of Mining |
CJES | Canadian Journal of Earth Sciences |
CMH | Canadian Mines Handbook |
CMJ | Canadian Mining Journal |
CSPG | Canadian Society of Petroleum Geologist Bulletin |
DIAND | Department of Indian and Northern Affairs (5*) |
ECON GEOL | Economic Geology and Bulletin of the Society of Economic Geologists |
EMG | Exploration and Mining Geology (Journal of the Geological Society of CIM) |
EMJ | Engineering and Mining Journal |
FIN POST | Financial Post |
GAC | Geological Association of Canada |
GBC | Geoscience BC |
GCNL | George Cross News Letter |
Geotech File | Geotechnical File for gravel pits (Ministry of Transportation and Highways) |
GSA | Geological Society of America |
IAEA | International Atomic Energy Agency |
IPDM | International Prospector and Developer Magazine |
JGE | Journal of Geochemical Exploration |
MAC | Mining Association of Canada |
MEG | Mineral Exploration Group (Vancouver) |
MIN REV | Mining Review Magazine |
MTH | Ministry of Transportation and Highways: District Pit or Provincial Pit (gravel pit numbers) |
NAGMIN | North American Gold Mining Industry News |
N MINER | Northern Miner (http://www.northernminer.com/) |
N MINER MAG | Northern Miner Magazine |
NW PROSP | Northwest Prospector Miners & Developers Bulletin |
PERS COMM | Personal Communication |
PR REL | Press Release |
SMF | Statement of Material Facts |
USGS | United States Geological Survey |
VSE | Vancouver Stock Exchange |
V STOCKWATCH | Vancouver Stockwatch |
WIN | Western Investment News |
W MINER | Western Miner and Oil Review Magazine |
WWW | World Wide Web (Internet) (see Industry Web Links in MINFILE) |
1* |
Ministry of Energy and Mines, Library Services, James T. Fyles Library, PO Box 9321 Stn Prov Govt, Victoria BC V8W 9N3; Location 1st Flr. - 1810 Blanshard Street, Phone: (250) 952-0583; Fax: (250) 952-0581; Email: Jennifer.Lu@gov.bc.ca; WWW: http://www.empr.gov.bc.ca/Mining/Geoscience/Pages/Library.aspx. |
2* |
National Mineral Inventory (NMI)/ EMR CORPFILE and EMR CORPFILE Index, Contact: James Lauer, Director, Statistics and Economic Analysis Division (SEAD), Minerals and Metals Sector, Natural Resources Canada, Ottawa, Ontario, Phone: (613) 995-5301, e-mail: jlauer@nrcan.gc.ca; WWW: http://www.nrcan.gc.ca//library/home |
3* |
Earth Sciences Information Centre (ESIC), Geological Survey of Canada (GSC), 601 Booth Street, Ottawa, Ontario, K1A 0E8; Bookstore: Phone (613) 995-4342, Fax (613) 943-0646, Email: gsc_bookstore@gsc.nrcan.gc.ca; Library: Phone: (613) 996-3919, Fax: (613) 943-8742, Email: esic@nrcan.gc.ca; Interlibrary Loan Service: Phone: (613) 996-1604, Fax: (613) 943-8742, Email: ill@gsc.nrcan.gc.ca; GSC WWW: http://www.nrcan.gc.ca/libraries/03_e.html; ESIC http://www.nrcan.gc.ca/earth-sciences |
4* | Minerals and Metals Sector; http://www.nrcan.gc.ca/mining-materials/mining |
5* | Exploration and Geological Services Division, Indian and Northern Affairs, 345-300 Main Street, Whitehorse, YT, Y1A 2B5; Contacts: Grant Abbott, Chief Geologist, Phone: (867) 667-3200, Fax: (867) 393-6232, Email:gabbott@gov.yk.ca; Robert Deklerk, MINFILE Geologist, Phone: (867) 667-3205, Email: robert.deklerk@gov.yk.ca; WWW: http://www.geology.gov.yk.ca/ |
9.1 Inventory Data
The MINFILE coding forms include space for information on deposit economics or mineral inventory. Several parameters affect the qualitative and quantitative reporting of the economic potential of a mineral occurrence. Some of these are the variable reliability of reporting, differences in interpretation of terms, and changing economic conditions.
The Reserve category is used only for an inventory in an operating mine or a mine near production. Ore reserves are reported as Proven, Probable and Possible. The Resource category is used for all other inventories. Resources are reported as Measured, Indicated and Inferred. A combination of categories is reported as Combined. If the category is not known then Unclassified is used. Sample data can be entered using the Assay/Analysis category. The reserves/resources are reported in tonnes with the grade of commodities.
Reserves and resources are not calculated by Ministry of Energy, Mines and Petroleum Resources personnel but are quoted from referenced industry sources and/or publications. Due to differences in identifying categories in the data sources, Ministry personnel may occasionally have to interpret which category the figures are placed into. The reader should refer to the original data for detailed information.
In general, the inventory is identified by occurrence, zone name and year. There may be an unlimited number of ore zones per occurrence. In addition, each zone name may have inventory for each category. Each ore zone can have a maximum of two inventory calculations per year, per category (e.g., Calculation A & B). This allows for changes in calculations due to grade-tonnage relationships; calculation A may be high-grade low tonnage while calculation B may reflect a low-grade tonnage. Generally, only data for the most recent year is maintained in the database. Older data is erased when data for a new year is input. Only one calculation may be used per ore zone in the ASSAY/ANALYSIS category. The ASSAY/ANALYSIS data cannot coexist with reserves information for any given ore zone name.
9.2 Zone Name(*)
(R26-28) (E27)
This is the name of the distinct unit or ore zone of a deposit for which a calculation is made. Several zones may be associated with each deposit and may include categories in both the Reserve and Resource fields. If a deposit has only one ore zone or does not distinguish between ore zones, then the name of the deposit is used for the zone name. Inventory data is not mandatory if an ore zone is not entered.
Appendix XV. Sample type is mandatory ONLY if assay/analysis is selected.
9.3 Inventory Category(*)
(R26,R28) (E29)
Note that you cannot have an "Assay" category with the same ore zone name as another existing category for any given occurrence.
9.3.1 RESERVE: The Reserve category is used only for a mineral and/or substance inventory in an operating mine or mine near production. Sufficient information is available to form the basis of a preliminary mine production plan. Factors that affect ore reserve estimates are geological, economic, mining, metallurgical, marketing, environmental, social and governmental conditions. Ore reserves are reported as Proven, Probable and Possible.
Proven (PV): Ore reserves are stated in terms of mineable tonnes and grades in which the identified substance has been defined using sufficient metallurgical, mine method, geoscientific, infrastructure, operating and capital cost data. Other applicable reserve adjectives may include measured recoverable, diluted, mineable, ore, or in situ.
Probable (PB): Ore reserves are stated in terms of mineable tonnes and grades where sufficient information is available about the thickness, grade, grade distribution, mineable shape and extent of the deposit. Continuity of mineralization should be clearly established. Other applicable reserve adjectives may include measured geological, drill indicated, or indicated.
Possible (PS): Ore reserves are stated in terms of mineable tonnes and grades computed on the basis of limited geoscientific data, but with a reasonable understanding of the distribution and correlation of the substance in relation to this data. Other applicable reserve adjectives may include inferred, geological, mineral inventory, or potential.
9.3.2 RESOURCE: The Resource category is used for a mineral and/or substance inventory other than an operating mine. Valuable or useful material is quantified on the basis of geoscientific data and expected economic merit. Mine, metallurgical, price and cost data are not necessarily available. In reporting a resource, there is an implication that there are reasonable prospects for eventual economic exploitation. Resources are reported as Measured, Indicated and Inferred.
Measured (MG): Sufficient information is available about the thickness, grade, distribution, mineable shape and extent of the deposit to give defined grade and tonnage figures. Continuity of mineralization should be clearly established. Other applicable resource adjectives may include proven, measured recoverable, diluted, mineable, or in situ.
Indicated (IN): Tonnage and grade are computed partly from detailed sampling procedures and partly from projection for a measurable distance, based on geoscientific data. Sampling procedures are too widely spaced to ensure continuity but close enough to give a reasonable indication of continuity. Other applicable resource adjectives may include probable, measured geological, or drill indicated.
Inferred (IF): An estimate of tonnage and grade computed from geoscientific data or other sampling procedures, but before testing and sampling information is sufficient to allow a more reliable and systematic estimation. Other applicable resource adjectives may include possible, geological, mineral inventory, or potential.
9.3.3 OTHER: These are to be used only if the data cannot be categorized as Reserves or Resources.
Combined (CB): This designation is used when an inventory figure is reported to be a combination of categories (e.g.) PV + PB (Proven and Probable) reserves or MG + IF (Measured and Inferred) resources. It can be applied to both the Reserve and Resource categories.
Unclassified (UN): Reserve/Resource and categories. For example, a tonnage figure is given with grades of commodities, but the category is not stated.
Assay/Analysis (BA): Samples of one or more of the various sample types listed below have been collected and analyzed. This category is reserved for deposits which have no reported inventory figures. The value quoted should normally be representative of a group of samples and is not necessarily the assay containing the highest values. If available the sample size should be identified in the comment field. The 'SAMPLE TYPE' must be identified when using this category.
Unknown (**):This designation indicates that not enough information is available to determine the category.
9.4 Year(*)
(R26,R27)
This is the year the inventory figures were published and is mandatory information for any inventory data. If the inventory figures were calculated in any year prior to the official publication date, the source and year of the calculations should be identified in the comment field.
9.5 Sample Type
When the Assay category is chosen, the sample type must be identified using one of the following:
CODE | SAMPLE TYPE AND DEFINITION |
AUGR | Auger - a sample taken using and auger. |
BULK | Bulk - a large volume sample collected from one or more sites for assay or metallurgical testing. It includes limited sampling or mining in initial production stages for plant site and operations testing. |
CHIP | Chip - a large number of small chips or specimens collected over a specific area. |
CHNL | Channel - a sample of all material collected from a channel of specific dimensions across a sample site. |
DIAD | Drill Core - a split or other type of drill core sample. |
GRAB | Grab - a single sample normally selected to represent either high or low grade material. |
ROCK | Rock - this may be a chip, channel or grab sample which has been analyzed by standard geochemical techniques rather than assay techniques. |
TRNC | Trench - a sample taken from a trench. |
**** | Unknown - This may only be used when the data is important and needs to be included but the sample type is not known. |
9.6 Quantity(*)
(R26)
Reserves or resources must be quoted in metric tonnes. General or approximate figures are only acceptable where no other information is available; this should be clearly explained in the comment field. This is not filled in for Assays.
9.7 Commodity/Grade(*)
(R28)
The inventory information can have data on up to six commodities. These should reflect only those commodities which can be recovered from a deposit. Minor or accessory commodities of economic interest can be identified in the commodities field of the Mineral Occurrence section.
Commodities are entered by selecting from the Commodities table (see Appendix II) followed by the grade (precious metals in grams per metric tonne, other commodities as per cent). Some industrial minerals may be quoted in kilograms. Commodities entered in the inventory data field, must first be captured as commodities in the Mineral Occurrence tab of the MINFILE/www online coding card. In many of the reports, the commodities are indicated by the standard two-letter, elemental chemical symbol or two-letter codes (see Appendix II); these are also used when searching for commodities.
9.8 Comments - Inventory
(C11)
This is a free-format field to identify information on cutoff grades or other data pertinent to the final figures. Unlimited lines are allowed.
9.9 Reference(*)
The source of the inventory figures is mandatory. Avoid using abbreviations to minimize confusion on the source of the reference. When necessary, an abbreviated format for the reference, similar to the bibliography, is acceptable.
NOTE: Conversion factors are included in Appendix VII.
10.1 Production Data
(R18a,b)
Historic production records are provided by the Mines and Minerals Division of the Ministry of Energy, Mines and Petroleum Resources. Reference should be made in the bibliography to the BC METAL number.
New production is entered using the MINFILE Number, followed by the production year. Information on either ore mined (in tonnes) or ore milled (in tonnes) must be entered. Commodity production should be entered with precious metals quoted in grams and base metals or other commodities quoted in kilograms. If there are no figures for tonnes milled the field may be left blank.
10.2 Comments - Production
(C10)
This text is used to clarify information reported in the production field for any given year. It should be used to indicate the reference source for new production figures not obtained from the Mines and Minerals Division, or corrections to the reported figures. If there is no comment for a production year or years, it has originated from the Mines and Minerals Division.
I. Procedure for Deriving Mnemonic Mineral Codes
The following system, which has been implemented by various data systems and organizations, is used for deriving mnemonic mineral codes. The mnemonic code is derived by eliminating letters of the original term until only 4 remain. The ranking of letters in order of elimination is as follows:
1. A | 15. D |
2. E | 16. C |
3. I | 17. M |
4. O | 18. F |
5. U | 19. G |
6. W | 20. P |
7. H | 21. K |
8. Y | 22. B |
9. Double letters (delete one) | 23. V |
10. T | 24. X |
11. N | 25. J |
12. S | 26. Q |
13. R | 27. Z |
14. L |
1. The first letter of each word is retained.
2. Remove insignificant words, such as "the", "on", "a", "an", etc.
3. Only one letter of a double letter occurrence is deleted.
4. Deletion continues until the code word is reduced to 4 letters.
5. Words already smaller than the predetermined size carry blank notations to complete the code.
6. The word is entered on the left in the field and any blanks will be on the right side.
7. Some duplicates may appear; they must be arbitrarily changed by some central authority if
system-wide uniqueness is to be maintained.
If a code does not exist in the system use the above rules to derive the mnemonic code and then enter the code in the appropriate section in both mnemonic code and full name. These will be approved and entered into the system by the MINFILE team.
II. MINFILE Commodity Codes
|
|
III. Mineral, Rock and Modifier Codes
Download the Excel table (49 KB)
IV. Stratigraphic Host Codes
V. Stratigraphic Age Codes
Code | ERA | PERIOD | EPOCH |
*** | Unknown | ||
100 | Cenozoic | ||
110 | Quaternary | ||
111 | Recent | ||
112 | Pleistocene | ||
119 | Pliocene-Pleistocene | ||
120 | Tertiary | ||
121 | Pliocene | ||
122 | Miocene | ||
123 | Oligocene | ||
124 | Eocene | ||
125 | Paleocene | ||
129 | Cretaceous-Tertiary | ||
199 | Mesozoic-Cenozoic | ||
200 | Mesozoic | ||
210 | Cretaceous | ||
211 | Upper Cretaceous | ||
214 | Middle Cretaceous | ||
217 | Lower Cretaceous | ||
219 | Jurassic-Cretaceous | ||
220 | Jurassic | ||
221 | Upper Jurassic | ||
224 | Middle Jurassic | ||
227 | Lower Jurassic | ||
229 | Triassic-Jurassic | ||
230 | Triassic | ||
231 | Upper Triassic | ||
234 | Middle Triassic | ||
237 | Lower Triassic | ||
239 | Permian-Triassic | ||
299 | Paleozoic-Mesozoic | ||
300 | Paleozoic | ||
301 | Upper Paleozoic | ||
310 | Permian | ||
311 | Upper Permian | ||
314 | Middle Permian | ||
317 | Lower Permian | ||
319 | Pennsylvan.-Permian | ||
320 | Pennsylvanian | ||
321 | Upper Pennsylvanian | ||
324 | Middle Pennsylvanian | ||
327 | Lower Pennsylvanian | ||
329 | Carboniferous | ||
330 | Mississippian | ||
331 | Upper Mississippian | ||
334 | Middle Mississippian | ||
337 | Lower Mississippian | ||
339 | Devonian-Mississipp. | ||
340 | Devonian | ||
341 | Upper Devonian | ||
344 | Middle Devonian | ||
347 | Lower Devonian | ||
349 | Silurian-Devonian | ||
350 | Silurian | ||
351 | Upper Silurian | ||
354 | Middle Silurian | ||
357 | Lower Silurian | ||
359 | Ordovician-Silurian | ||
360 | Ordovician | ||
361 | Upper Ordovician | ||
364 | Middle Ordovician | ||
367 | Lower Ordovician | ||
369 | Cambrian-Ordovician | ||
370 | Cambrian | ||
371 | Upper Cambrian | ||
374 | Middle Cambrian | ||
377 | Lower Cambrian | ||
379 | Proterozoic-Cambrian | ||
399 | Proterozoic-Paleoz. | ||
400 | Proterozoic | ||
410 | Upper Proterozoic | ||
420 | Hadrynian | ||
440 | Middle Proterozoic | ||
450 | Helikian | ||
470 | Lower Proterozoic | ||
480 | Aphebian | ||
500 | Archean | ||
510 | Upper Archean | ||
540 | Middle Archean | ||
570 | Lower Archean |
VI. Terrane Codes, Descriptions and Legend
Terrane (Table e13.dbf) | Code |
Alexander | AX |
Ancestral North America | NA |
Barkerville | KOB |
Bridge River | BR |
Cache Creek | CC |
Cadwallader | CD |
Cariboo | CAC |
Cassiar | CA |
Chilliwack | CK |
Chugach | CG |
Crescent | CR |
Dorsey | DY |
Harper Ranch | QNH |
Harrison | HA |
Kootenay | KO |
Methow | MT |
Monashee | MO |
Nisling | NS |
Nisultin | KON |
Okanagan | QNO |
Pacific Rim | PR |
Pelly Gneiss | PG |
Plutonic Rocks (includes Coast Plutonic Complex) | CPC |
Porcupine | PC |
Quesnel | QN |
Shuksan | SH |
Slide Mountain | SM |
Stikine | ST |
Taku | TU |
Undivided Metamorphic Assemblages | M |
Windy McKinley | WM |
Wrangell | WR |
Yakutat | YA |
Post Terrane Accretion Overlap Assemblages
Bowser Lake | JBL |
Overlap Assemblage | JKT |
Gambier | JKG |
Inklin | JI |
Lewes River | TRL |
Takwahoni | JT |
Unknown | *** |
LegendMIOGEOCLINE CRATON
TERRANES: geological record, except for displaced continental margin, differs from that of Ancestral North America. NORTH AMERICAN BASEMENT?
DISPLACED CONTINENTAL MARGIN: stratigraphic record similar to that of adjacent Ancestral North America.
PERICRATONIC: no record of significant displacement but rocks differ in stratigraphic or structural characteristics from the ancient continental margin.
SUBTERRANES
ACCRETED TERRANES: represent oceanic or island arc lithologies, generally of unknown Paleogeographic origin, which are clearly allochthons with respect to miogeoclinal strata. These are grouped into the Intermontane and Insular superterranes. INTERMONTANE SUPERTERRANE: terranes amalgamated by latest Triassic time and accreted to Ancestral North America in the Jurassic.
DTRH Harper Ranch
TERRANES OF THE COAST BELT
INSULAR SUPERTERRANE: terranes amalgamated by Late Jurassic to earliest Cretaceous time and accreted to continental margin in the Cretaceous.
OUTER TERRANES: Mesozoic and Tertiary accretionary prisms
ROCKS EXCLUDED FROM TERRANE CLASSIFICATION: METAMORPHIC ASSEMBLAGES
PLUTONIC ROCKS
POST-TERRANE ACCRETION OVERLAP ASSEMBLAGES HIGHLIGHTED ON MAP:
POST TERRANE ACCRETION OVERLAP ASSEMBLAGES UNDIFFERENTIATED ON MAP
|
VII: Conversion Factors
1 ounce (troy)
1 troy ounce per short ton
1 gram per metric tonne
1 kilogram (kg)
1 ounce (avdp)
= 31.1034768 grams
= 34.2857 grams per metric tonne = 34.2857 ppm
= 0.0292 troy ounce per short ton
= 32.151 ounces (troy) = 35.274 ounces (avdp) = 2.205 pounds (avdp)
= 28.3495 grams
i.e. 1 troy ounce = 31.103481 grams but a troy ounce/ton using a conversion of 31.103481 gives you only GRAMS PER SHORT TON. To complete the metric conversion you must also convert short tons to tonnes using the conversion factor 0.9071. So: 31.103481 grams per ton 0.9071 = 34.2857 grams per tonne.
1 inch (in)
1 foot (ft)
1 cubic foot (cu ft)
1 yard (yd)
1 metre (m)
1 mile (mi)
1 kilometre (km)
1 acre (ac)
1 hectare (ha)
1 square kilometre (sq km)
1 square mile (sq mi)
1 litre (l)
1 litre (l)
1 kilogram (kg)
1 metric ton (1000 kg)
1 long ton (l t)
1 short ton (s t)
1 pound (lb)
= 2.54 centimetres
= 0.3048 metres
= 0.028 cubic metres
= 91.44 centimetres = 0.9144 metres
= 39.370 inches = 3.28083 feet = 1.094 yards
= 1.6093 kilometres = 1609.3 metres
= 0.621371 miles = 3280 feet = 1000 metres
= 0.4047 hectares
= 2.471 acres = 10,000 square metres = 0.00386 square miles
= 247.1 acres = 100 hectares = 0.3861 square miles
= 640 acres = 258.99 hectares = 2.59 square kilometres
= 0.220 gallons (imperial) = 0.880 quarts (imperial)
= 1000 cubic centimetres = 61.025 cubic inches
= 2.2045855 pounds
= 0.9842 tons (long) = 1.102311 tons (short) = 2204.622 pounds
= 1.01605 tonne = 2240 pounds (lb)
= 0.90718474 tonne = 2000 pounds (lb)
= 0.45359237 kilograms
Degrees Fahrenheit (oF) - 32x5/9 = Degrees Celsius (oC)
1 ppm
1%
1 nano gram/g
1 micro gram/gl
1 mg/l
1 micro g/l
1 micro g/ml
= 1000 ppb
= 10,000 ppm
= 1 ppb solids
= 1 ppm solids
= 1 ppm liquids
= 1 ppb liquids
= 1 ppm liquids
To Convert | To Obtain | Multiply By | |
Aluminium | Al | Al2O3 | 1.8895 |
Antimony | Sb | Sb2O3 | 1.1971 |
Arsenic | As | As2O3 | 1.3203 |
As | As2O5 | 1.534 | |
Barium | Ba | BaSO4 | 1.6994 |
Ba | BaO | 1.117 | |
Beryllium | Be | BeO | 2.775 |
Bismuth | Bi | Bi2O3 | 1.1148 |
Boron | B | B2O3 | 3.2199 |
Cadmium | Cd | CdO | 1.1424 |
Calcium | Ca | CaCO3 | 2.4973 |
Ca | CaO | 1.399 | |
Ca | CaF2 | 1.9481 | |
Cerium | Ce | CeO2 | 1.2284 |
Ce | Ce2O3 | 1.171 | |
Cesium | Cs | Cs2O | 1.060 |
Chromium | Cr | Cr2O3 | 1.4616 |
Cobalt | Co | Co3O4 | 1.3620 |
Co | CoO | 1.271 | |
Copper | Cu | CuO | 1.2518 |
Fluorine | F | CaF2 | 2.0549 |
Hafnumu | Hf | HfO2 | 1.1793 |
Iron | Fe | Fe2O3 | 1.4297 |
Fe | Fe3O4 | 1.382 | |
Fe | FeO | 1.2865 | |
Fe | FeS | 1.5741 | |
Lanthanum | La | La2O3 | 1.1728 |
Lead | Pb | PbO | 1.0772 |
Pb | PbS | 1.1547 | |
Lithium | Li | Li2CO3 | 5.3240 |
Li | Li2O | 2.153 | |
Magnesium | Mg | MgCO3 | 3.4683 |
Mg | MgO | 1.6581 | |
Manganese | Mn | MnO | 1.2912 |
Mn | MnO2 | 1.582 | |
Mercury | Hg | HgO | 1.0798 |
Hg | HgS | 1.1598 | |
Molybdenum | Mo | MoS2 | 1.6681 |
Mo | MoO3 | 1.500 | |
Nickel | Ni | NiO | 1.2725 |
Niobium | Nb | Nb2O5 | 1.4305 |
Phosphorus | P | P2O5 | 2.2914 |
P2O5Ca3 | (PO4)2 | 2.1852 | |
Potassium | K | K2O | 1.2046 |
Rubidum | Rb | Rb2O | 1.094 |
Silicon | Si | SiO2 | 2.1393 |
Sodium | Na | NaCl | 2.5421 |
Na | Na2O | 1.348 | |
Strontium | Sr | SrO | 1.185 |
Sr | SrSO4 | 2.0963 | |
Tantalum | Ta | Ta2O5 | 1.2211 |
Thorium | Th | ThO2 | 1.1379 |
Tin | Sn | SnO2 | 1.2696 |
Titanium | Ti | TiO2 | 1.6681 |
Tungsten | W | WO3 | 1.2611 |
Uranium | U | U3O8 | 1.1792 |
U | UO3 | 1.202 | |
U | UO2 | 1.134 | |
Vanadium | V | V2O5 | 1.7852 |
Yittrium | Y | Y2O3 | 1.270 |
Zinc | Zn | ZnO | 1.2448 |
Zn | ZnS | 1.490 | |
Zirconium | Zr | ZrO2 | 1.3508 |
VIII: Glossary of Historic & Equivalent Mineral Names
Historic Mineral |
Name Current Alias |
Alumina | Aluminum oxide |
Antimonite | Stibnite |
Antimony glance | Stibnite |
Barytes | Barite |
Blue John | Fluorite (purple/blue) |
Blackjack | Sphalerite |
Brimstone | Sulphur |
Calamine | Hemimorphite (+ Smithsonite, Hydrozincite oxide zinc ores) |
Calcium Tungstate | Scheelite |
Calcspar | Calcite |
Cave Cotton | Gypsum |
Chrome Mica | Fuchsite and/or Mariposite |
Copper Carbonate-blue (or Blue Copper Ore) | Azurite |
Copper Carbonate-green | Malachite |
Copper Glance | Chalcocite |
Cobalt Bloom | Erythrite |
Electrum | Amalgum of native gold & silver |
Emery | Spinel |
Epsom Salt | Magnesium Sulphate |
Fool's Gold | Usually chalcopyrite but may be pyrite or sometimes sericite |
Flint | Silica |
Fluorspar | Fluorite |
Glauber's Salt | Magnesium Sulphate |
Green Lead Ore | Pyromorphite (Apatite (Pb5(PO4)5Cl)) |
Gray Antimony | Stibnite |
Gray Copper | Tetrahedrite |
Horseflesh Ore | Bornite |
Herkimer Diamond | Quartz crystal |
Heavy Spar | Barite (or Feldspar) |
Iron Glance | Hematite (specularite) |
Iron Spar | Siderite |
Iceland Spar | Calcite |
Kupfernickel | Niccolite |
Lodestone | Magnetite |
Mispickel | Arsenopyrite |
Mountain Leather or Mountain Cork | Weathered Asbestos |
Molybdenum Bloom | Powellite |
Nickel Bloom | Annabergite |
Nickel Glance | Gersdorffite |
Peacock Copper | Bornite |
Ruby Silver | Pyrargyrite |
Salt Cake | Sodium sulphate |
Silver Glance | Tetrahedrite |
Silicate of Copper | Chrysocolla |
Spathic Iron | Siderite |
Sulphide of Copper & Silver | Stromeyerite (50% Cu & 32% Ag) |
Tiff | Calcite or Barite |
Tinstone | Cassiterite |
Titanic Iron Ore | Ilmenite |
Tripoli | Diatomite |
Wad | Manganese Oxide |
White Lead Ore | Cerussite |
White Pyrite | Marcasite |
Wood Tin | Botryoidal Cassiterite |
Yellow Copper | Chalcopyrite |
Yellow Lead Ore | Wulfenite |
Yellow Arsenic | Orpiment |
Zinc Blende | Sphalerite |
Zinc Spar | Smithsonite |
IX: Work Type Codes and Measurements
General Type
|
Specific Type | Work Type | Work Type Unit of Measurement |
Geological | General or unknown | GEOL | Hectares |
Photo | FOTO | Hectares | |
Petrographic | PETR | Number of sample(s) | |
Mineralographic | MNGR | Number of sample(s) | |
Geophysical | General or Unknown | GEOP | Kilometres |
Magnetic, ground | MAGG | Kilometres | |
Magnetic, airborne | MAGA | Kilometres | |
Electromagnetic, ground | EMGR | Kilometres | |
Electromagnetic, airborne | EMAB | Kilometres | |
Induced Polarization | IPOL | Kilometres | |
Radiometric, ground | RADG | Kilometres | |
Radiometric, airborne | RADA | Kilometres | |
Seismic | SEIS | Kilometres | |
Dip needle | DIPN | Kilometres | |
Self potential | SPOT | Kilometres | |
Gravity | GRAV | Kilometres | |
Resistivity (alone) | REST | Kilometres | |
Mise-a-la-masse | MALM | Metres | |
Scintillometer, ground | SCGR | Kilometres | |
Scintillometer, airborne | SCAB | Kilometres | |
Gamma ray spectrometer, ground | GRSG | Kilometres | |
Gamma ray spectrometer, airborne | GRSA | Kilometres | |
Radiometric drill hole probing | RADP | Metres | |
Radon gas scintillometry | RGAS | Kilometres | |
Radar | RADR | Kilometres | |
Infra-red | INFR | Kilometres | |
Geochemical | General or unknown | GEOC | |
Fission track etch | ETCH | Number of sample(s) | |
Soil | SOIL | Number of sample(s) | |
Silt | SILT | Number of sample(s) | |
Rock | ROCK | Number of sample(s) | |
Heavy minerals | HMIN | Number of sample(s) | |
Sampling/assaying | SAMP | Number of sample(s) | |
Metallurgic | META | Number of sample(s) | |
Water | HYDG | Number of sample(s) | |
Biogeochemistry | BIOG | Number of sample(s) | |
Drilling | General or unknown | DRIL | Metres/number of holes |
Diamond (surface) | DIAD | Metres/number of holes | |
Diamond (underground) | UNDD | Metres/number of holes | |
Percussion | PERD | Metres/number of holes | |
Rotary | ROTD | Metres/number of holes | |
Becker Hammer | BHDR | Metres/number of holes | |
Churn | CHUD | Metres/number of holes | |
Overburden | OBDR | Metres/number of holes | |
Prospecting | Prospecting | PROS | Hectares |
Physical | General or unknown | PHYS | |
Legal surveys | LSUR | Kilometres | |
Topographic/photogrammetric | TOPO | Hectares | |
Line/grid | LINE | Kilometres | |
Road, local access | ROAD | Kilometres | |
Trench | TREN | Metres/number of trenches | |
Underground development | UNDV | Metres | |
Reclamation | RECL | Hectares | |
Trail | TRAL | Kilometres | |
Underground surveys | USUR | Metres | |
Stripping | STRI | Hectares | |
Pits | PITS | Number of pits(s) | |
Sluicing/Panning | SLUC | Amount | |
Staking | STAK | Number of claims | |
Crown Granted | CGRT | Number of crown grants | |
Rail | RAIL | Kilometres | |
Tram Lines | TRAM | Kilometres | |
Mill Construction | MILL | ----- | |
Rehabilitation | RHAB | ----- | |
Mining/Milling Production | MINE | ----- | |
Feasibility Study | FEAS | ----- |
X: Coding and Editing Guidelines
INTRODUCTION
The following are guidelines for the methodology, writing and editing procedures, and materials used by the MINFILE team. All data must be entered using the MINFILE/www online Coding Card. A hard copy (i.e. completed coding card or printout of digital version) must accompany the digital version. Before coding begins, please ensure that the following documentation has been read and any questions have been addressed. The objective of the MINFILE project is to maintain a data set that is as accurate and complete as possible. Please note that in order to be able to submit occurrence data online you need the following:
1. a BCeID Account
2. a userid from the MINFILE Unit by emailing Gabe Fortin
Document Subject
MINFILE Coding Manual, V. 5.0, Information Circular 2007-4 Coding rules
MINFILE/pc V. 5.0 User's Manual, Information Circular 2007-5 Search/Report/Data Entry
GSB Style Guide, Information Circular 1992-7 Writing/Editing
MINFILE Office: 5th Floor, 1810 Blanshard Street, Victoria, B.C. V8V 1X4
Contacts: Fax (250) 952-0381
Vacant, MINFILE Geologist;
Yao Cui, Acting Director, Resource Information (778) 698-7215
CODING AND EDITING PROCEDURE
The following is the suggested procedure to assist in the gathering and coding of information for a 1:250 000 scale or 1:100 000 scale National Topographic System (NTS) map sheets for the MINFILE database. This procedure should be used as a guide; detailed information is available in the appropriate sections of the Coding Manual.
1) Assemble general NTS map sheet information.
Current MINFILE or Mineral Inventory Map (MI) - On this map, plot, if practical, terranes, physiographic areas, mining divisions, and tectonic belts. Enlarging the existing small-scale map will help. The following are the small-scale maps currently be
Physiographic Map of the Canadian Cordillera, W.H. Mathews, 1986, Geological Survey of Canada Map 1701A, Scale 1:5 000 000.
Tectonic Assemblage Map of the Canadian Cordillera and adjacent parts of the United States of America, J.O. Wheeler and P. McFeely (comp.), 1991, Geological Survey of Canada Map 1712A, Scale 1:2 000 000.
Terrane Map of the Canadian Cordillera, J.O. Wheeler, et. al. (comp.), 1991, Geological Survey of Canada Map 1713A, Scale 1:2 000 000.
Metamorphic Map of the Canadian Cordillera, P.B. Read, 1991, Geological Survey of Canada, Map 1714, Scale 1:2 000 000.
2) Obtain existing mineral occurrence information within the NTS map sheet.
3) Communicate with field and expert geologists.
4) Begin coding by 'Mining or Exploration' Camps or by areas of similar geology.
5) Build references on individual occurrences.
EMPR AR; GEM; EXPL; ASS RPT; Articles; etc.
EMPR PF (Standard reference format: Name (year): Title, Source)
GSC BULL; MEM; OF; MAP; etc.
Periodicals, N. Miner, Theses, etc.
6) Locate occurrence accurately.
7) Complete data fields.
Separate and rank the data (mineralogy, deposit character and classification, lithology) into the various fields. Provide lithological synonyms if required.
8) Occurrence Name(s).
The first name should be the most significant or currently used one. All names related to the occurrence should follow, including group names, claim names, place names, etc.
9) Assigning the Host Rock.
10) Inventory.
11) Production.
12) MINFILE Maps.
13) Confidential Information.
Indicate on the card or printout the confidential information and the date it comes off confidential. It stays in a holding file until this date, then it will be entered into the database.
14) New/Revision/Modified - Coded by/Coding date.
New - add a new occurrence.
Revise - change existing occurrence.
Delete - delete occurrence due to duplication or lack of verification.
15) Capsule Geology.
Spelling: metres (not meters)
per cent (not percent)
axis (not axes)
dikes (not dykes)
16) Bibliography.
17) NTS Map Sheet Summaries.
18) Editing.
MINFILE is a large and complex relational database. In the process of making the MINFILE product as accurate and consistent as possible, all coded material is edited before and after input to the database. However, due to the large volume of data, it is necessary for each coder to ensure their work is as complete and error free as possible. The following are some general guidelines to assist in the editing process and they should be applied to all occurrence descriptions before submission to the MINFILE database.
i) Style:
The Mineral Resources Division, Geological Survey Branch Style Guide should be referred to for details on sentence structure, spelling, punctuation, word usage, etc.
North Trending | not | North-South Trending |
Southeast | not | Southeasterly |
Sulphide | not | Sulfide |
Striking 065 degrees | not | Striking north 65 degrees east |
Jurassic Hazelton Group | not | Hazelton Group of Jurassic age |
23 by 300 metres | not | 23 X 300 m. |
20 to 25 per cent | not | 20% to 25% |
"close to" or "near" | not | "in close proximity to" |
gossanous | preferred to | rusty |
ii) Deletions:
If you delete a MINFILE occurrence from the database, a coding form should be submitted identifying the MINFILE Number and the occurrence name. Clearly identify the reason for deleting the occurrence on the front of the form (e.g. Combined with another occurrence (identify); not sufficient documentation to warrant an occurrence; located on a different map sheet, etc.). Under no circumstances are veins or old workings to be coded as MINFILE occurrences unless mineralization of economic interest is documented.
iii) Occurrence Names:
iv) Status:
Does Status conform to Production and Reserve/resource data? If production or reserve/resource data is present the status should indicate a "developed prospect", "producer" or "past producer" etc., not a "showing". Bulk samples for testing or very small scale single event mining activity does not warrant classification of an occurrence as a past producer.
v) Location:
vi) Commodities:
vii) Mineralogy:
viii) Deposit Descriptions:
All characteristics of MINFILE occurrences described in the Capsule Geology should be identified in the Deposit Character, Classification and Type fields. These should be ranked in order of importance.
ix) Host Rock
x) Metamorphism:
Is the "Type" and "Grade" of metamorphism consistent with the alteration mineralogy and setting described elsewhere in the database?
xi) Capsule Geology:
The Capsule Geology is a compilation and interpretation of all data coded to the various data fields. It is particularly important to check the following:
xii) Bibliography:
XI: Summary of Data Field Characteristics
File
|
Field | Length | Alias | Mandatory | Max. Entries | Example | Checks & Range |
E01 | MINFILNO | 9 | MINFILE_NUMBER | Y | 1 | 104B 021 | 082-114/A-P/NESW/001-999 |
E01 | LAT_DEG | 2 | LATITUDE_DEGREES | note 2 | 1 | 56 | 48 - 60 |
E01 | LAT_MIN | 2 | LATITUDE_MINUTES | N | 1 | 12 | 0 - 60 |
E01 | LAT_SEC | 2 | LATITUDE_SECONDS | N | 1 | 41 | 0 - 60 |
E01 | LAT_HEMI | 1 | LATITUDE_HEMISPHERE | Y | 1 | N | N or S |
E01 | LONG_DEG | 3 | LONGITUDE_DEGREES | note 2 | 1 | 130 | 114 - 140 |
E01 | LONG_MIN | 2 | LONGITUDE_MINUTES | N | 1 | 20 | 0 - 60 |
E01 | LONG_SEC | 2 | LONGITUDE_SECONDS | N | 1 | 35 | 0 - 60 |
E01 | LONG_HEMI | 1 | LONGITUDE_HEMISPHERE | Y | 1 | W | W or E |
E01 | N83_LATDEG | 2 | NAD83_LATITUDE_DEGREES | note 2 | 1 | 56 | 48 - 60 |
E01 | N83_LATMIN | 2 | NAD83_LATITUDE_MINUTES | N | 1 | 12 | 0 - 60 |
E01 | N83_LATSEC | 2 | NAD83_LATITUDE_SECONDS | N | 1 | 40 | 0 - 60 |
E01 | N83_LATHEMI | 1 | LATITUDE_HEMISPHERE | Y | 1 | N | N or S |
E01 | N83_LONDEG | 3 | NAD83_LONGITUDE_DEGREES | note 2 | 1 | 130 | 48 - 60 |
E01 | N83_LONMIN | 2 | NAD83_LONGITUDE_MINUTES | N | 1 | 20 | 0 - 60 |
E01 | N83_LONSEC | 2 | NAD83_LONGITUDE_SECONDS | N | 1 | 42 | 0 - 60 |
E01 | N83_LONHEMI | 1 | LONGITUDE_HEMISPHERE | Y | 1 | W | W or E |
E01 | UTM_ZONE | 2 | UTM_ZONE | note 2 | 1 | 9 | 43292 |
E01 | UTM_EAST | 6 | UTM_EASTING | note 2 | 1 | 416700 | 290000 - 725000 |
E01 | UTM_NORT | 8 | UTM_NORTHING | note 2 | 1 | 6230200 | 5300000 - 6653000 |
E01 | N83_ZONE | 2 | NAD83_ZONE | note 2 | 1 | 9 | 43292 |
E01 | N83_EAST | 6 | NAD83_EASTING | note 2 | 1 | 416694 | 290000 - 725000 |
E01 | N83_NORT | 8 | NAD83_NORTHING | note 2 | 1 | 6230205 | 5300000 - 6653000 |
E01 | ELEV | 4 | ELEVATION | Y | 1 | 975 | 0 - 6000 |
E01 | LOC_ACC | 1 | DEPOSIT_LOCATION_ACCURACY | Y | 1 | 1 | 1,2,3 |
E01 | DEPSIZEL | 4 | DEP_SIZE_L | N | 1 | 1200 | nnnn |
E01 | DEPSIZEB | 4 | DEP_SIZE_B | N | 1 | 760 | nnnn |
E01 | DEPSIZEW | 4 | DEP_SIZE_W | N | 1 | 240 | nnnn |
E01 | DIP | 3 | DEPOSIT_DIP | N | 1 | 40W | nnN,E,S,W |
E01 | STRIKE | 3 | DEPOSIT_STRIKE | N | 1 | 20 | 001 - 360 |
E01 | PLUNGE | 6 | DEPOSIT_TREND_PLUNGE | N | 1 | 2040 | 001 - 360/01 - 90 |
E01 | NATMINNO | 18 | NAT_MIN_INV_NO | N | 1 | 104B1 Cu1 | 082-114/A-P/1-16/aaa/nnn |
E01 | CANMINNO | 6 | CANMINDEX_NUMBER | N | 1 | 000001 - 999999 | |
E01 | CODED | 8 | DATE_CODED | Y | 1 | 240785 | D/M/Y |
E01 | REVISED | 8 | DATE_REVISED | Y | 1 | 250788 | D/M/Y |
E01 | GREVISED | 4 | GEOLOGIST_REVISE | Y | 1 | LDJ | aaaa |
E01 | FREVISED | 1 | FIELD_REVISED | Y | 1 | N | Y or N |
E01 | FCHECKED | 1 | FIELD_CHECKED | Y | 1 | N | Y or N |
E01 | GNAME | 4 | GEOLOGIST_NAME | Y | 1 | GSB | aaaa |
E01 | OPENPIT | 1 | OPEN_PIT | note 3 | 1 | X | X |
E01 | UGROUND | 1 | UNDER_GROUND | note 3 | 1 | X | Y |
E31 | PROJ_NO | 7 | PROJECT_NUMBER | if exists | 1 | nnnnnnn | |
E31 | PROPERTY | 30 | PROPERTY_NAME | Y | 1 | open | |
E31 | PROPERTY_2 | 30 | PROPERTY_NAME2 | N | 1 | ||
E31 | OWNER | 30 | OWNER_NAME | Y | 1 | Company name | |
E31 | OWNER_2 | 30 | OWNER_NAME2 | N | 1 | or First name, | |
E31 | OPERATOR | 30 | OPERATOR | Y | 1 | Last name | |
E31 | DIST_SEQNO | 3 | DISTRICT_SEQUENCE_NUMBER | N | 1 | ||
E31 | DIST_MAPNO | 3 | DISTRICT_MAP_NUMBER | N | 1 | ||
E31 | LAT_DEG | 2 | LATITUDE_DEGREE | Y | 1 | 48 - 60 | |
E31 | LAT_MIN | 2 | LATITUDE_MINUTE | Y | 1 | 0 - 60 | |
E31 | LAT_SEC | 2 | LATITUDE_SECOND | Y | 1 | 0 - 60 | |
E01 | LAT_HEMI | 1 | LATITUDE_HEMISPHERE | Y | 1 | N or S | |
E31 | LON_DEG | 3 | LONGITUDE_DEGREE | Y | 1 | 114 - 140 | |
E31 | LON_MIN | 2 | LONGITUDE_MINUTE | Y | 1 | 0 - 60 | |
E31 | LON_SEC | 2 | LONGITUDE_SECOND | Y | 1 | 0 - 60 | |
E31 | LON_HEMI | 1 | LONGITUDE_HEMISPHERE | Y | 1 | W or E | |
E31 | N83_LATDEG | 2 | NAD83_LATITUDE_DEGREES | note 2 | 1 | 48 - 60 | |
E31 | N83_LATMIN | 2 | NAD83_LATITUDE_MINUTES | N | 1 | 0 - 60 | |
E31 | N83_LATSEC | 2 | NAD83_LATITUDE_SECONDS | N | 1 | 0 - 60 | |
E31 | N83_LATHEMI | 1 | LATITUDE_HEMISPHERE | Y | 1 | N or S | |
E31 | N83_LONDEG | 3 | NAD83_LONGITUDE_DEGREES | note 2 | 1 | 48 - 60 | |
E31 | N83_LONMIN | 2 | NAD83_LONGITUDE_MINUTES | N | 1 | 0 - 60 | |
E31 | N83_LONSEC | 2 | NAD83_LONGITUDE_SECONDS | N | 1 | 0 - 60 | |
E31 | N83_LONHEMI | 1 | LONGITUDE_HEMISPHERE | Y | 1 | W or E | |
E31 | LOC_ACC | 1 | LOCATION_ACCURACY_CODE | Y | 1 | 1,2,3 | |
E31 | CR_DATE | 8 | CREATED_DATE | Y | 1 | D/M/Y | |
E31 | RV_DATE | 8 | REVISED_DATE | Y | 1 | D/M/Y | |
E31 | CHECKED_BY | 5 | CHECKED_BY | Y | 1 | aaaa | |
ELECTORAL DISTRICT | ELECTORAL DISTRICT | 1 | table E42 | ||||
FOREST DISTRICT | FOREST DISTRICT | 1 | table E43 | ||||
R02 | STATUS_C | 4 | STATUS_TYPE_CODE | Y | 1 | PAPR | SHOW/PROS/DEPR/PROD/PAPR |
R03 | DOMHRK_C | 1 | DOMINANT_HOST_ROCK_CODE | Y | 1 | 1 | table E03 |
R04 | DEPMOD_C | 1 | DEPOSIT_MODIFIER_CODE | N | 2 | 1,4 | table E04 |
R05 | DEPCHR_C | 2 | DEPOSIT_CHARACTER_CODE | Y | 4 | 12,09,01 | table E05; ranked |
R06 | DEPSHA_C | 2 | DEPOSIT_SHAPE_TYPE_CODE | N | 1 | 1 | table E06 |
R07 | DEPCLA_C | 2 | DEPOSIT_CLASSIFICATION_CODE | Y | 4 | 03,05 | table E07, ranked |
R08 | NAME | 30 | NAME | Y | 16 | GRANDUC | ranked |
R09 | MINDIV_C | 4 | MINING_DIVISION_CODE | Y | 2 | SKEE | table E09 |
R10 | NTSMAP_C | 7 | NTS_MAPSHEET (1:50000) | Y | 4 | 104B01W | 082-114/A-P/01-16/E,W; table E10 |
R11 | BCMAP_C | 7 | BC_MAPSHEET (1:20000) | N | 4 | 104B029 | 082-114/A-P/001-100: table E11 |
R12 | TECBLT_C | 2 | TECTONIC_BELT_CODE | Y | 1 | IN | table E12 |
R13 | TERRAN_C | 3 | TERRANE_CODE | Y | 2 | ST | table E13 |
R14 | PHYSIO_C | 4 | PHYSIOGRAPHIC_AREA_CODE | N | 1 | BNRG | table E14 |
R15 | META_T_C | 1 | METAMORPHIC_TYPE_CODE | note 4 | 2 | 2 | table E15 |
R16 | META_G_C | 2 | METAMORPHIC_GRADE_CODE | N | 2 | AM | table E16 |
R17 | META_R_C | 1 | METAMORPHIC_RELATIONSHIP_CODE | N | 3 | 3 | table E17 |
R18a | YEAR | 4 | YEAR | if exists | 1 | 1984 | table E18 |
R18a | MINED | 12 | ORE_MINED | Y | 1 | 352630 | tonnes |
R18a | MILLED | 12 | ORE_MILLED | Y | 1 | 352630 | tonnes |
R18b | COMMOD_C | 2 | COMMODITY_CODE | Y | 6 | AG | table E19 |
R18b | QUANTITY | 12 | QUANTITY | Y | 6 | 3944057 | grams or kilograms |
R19 | COMMOD_C | 2 | COMMODITY_CODE | Y | 15 | CU,AG... | table E19; ranked |
R20 | MINCLA_C | 1 | MINERALOGY_CLASS_CODE | Y | 1 | 1,2,3; table E20a | |
R20 | MINERL_C | 4 | MINERAL_CODE | note 5 | 42590 | PYRT etc | table E20b; ranked |
R21 | ALTER_C | 4 | ALTERATION_CODE | N | 6 | EPID etc | table E21; ranked |
R22 | DATMET_C | 2 | DATING_METHOD_CODE | N | 1 | 1 | table E22 |
R22 | ISOAGE | 20 | ISOTOPIC_AGE_MINERALIZATION | N | 1 | 220 +/- 2 Ma | text |
R22 | MATERIAL | 30 | MATERIAL_DATED_MINERALIZATION | N | 1 | Galena | text |
R23 | ST_AGE_C | 3 | STRATIGRAPHIC_AGE_CODE | Y | 1 | 227 | table E24 |
R23 | STNAME_C | 6 | STRATIGRAPHIC_NAME_CODE | note 6 | 43133 | 289514 | table E23 |
R23 | DATMET_C | 2 | DATING_METHOD_CODE | N | 1 | 11 | table E22 |
R23 | ISOAGE | 20 | ISOTOPIC_AGE_HOST | N | 1 | 210+/-10Ma | text |
R23 | MATERIAL | 30 | MATERIAL_DATED_HOST | N | 1 | Zircon | text |
R24 | ST_AGE_C | 3 | MINERALIZATION_AGE_CODE | N | 1 | *** | table E24 |
R25 | ROCK_T_C | 4 | ROCK_TYPE_CODE | Y | 10 | SCST etc | table E25; ranked |
R25 | ROCK_M_C | 4 | ROCK_MODIFIER_CODE | N | 3x10 | QRTZ etc | table E26 |
R26-R28 | OREZON_C | 5 | ORE_ZONE_CODE | if exists | unlimited | 99814 | table E27 |
R26,R28 | RESCAT_C | 2 | RESERVE_CATEGORY_CODE | Y | 1 | IN | table E29 |
R26-R28 | A_OR_B | 1 | A_OR_B | Y | 1 | A | use A first |
R26,R27 | YEAR | 4 | YEAR | Y | 1 | 1969 | table E18 |
R26 | QUANTITY | 12 | QUANTITY | Y | 1 | 39316435 | tonnes |
R26 | REPORT_ON | 1 | REPORT_ON | N | 1 | Y | Y or N |
R27 | SAMPLE_C | 4 | SAMPLE_TYPE_CODE | N | 1 | table E28 | |
R28 | COMMOD_C | 2 | COMMODITY_CODE | Y | 6 | CU | table E19 |
R28 | GRADE | 9 | GRADE | Y | 6 | 1.73 | grams per tonne or per cent |
R30 | DEPTYP_C | 5 | DEPOSIT_TYPE_CODE | N | 4 | GO4 | table E30 |
R31 | PROJ_NO | 7 | PROJECT_NUMBER | if exists | 1 | nnnnnnn | |
R31 | MINFILNO | 9 | MINFILE_NUMBER | if exists | 16 | if associated with Project | |
R32a | NOW_NO | 9 | NOTICE_NUMBER | if exists | unlimited | YYYY-nnnn | |
R32a | NOTIC_TYP | 1 | NOTICE_TYPE_CODE | Y | 1 | table E32 | |
R32a | RECVD_DATE | 8 | RECEIVED_DATE | N | 1 | D/M/Y | |
R32a | APRV_DATE | 8 | APPROVED_DATE | N | 1 | D/M/Y | |
R32a | OPERATOR | 30 | OPERATOR | N | 1 | ||
R32a | MANAGER | 30 | MANAGER | N | 1 | ||
R32a | MGR_TEL | 14 | MANAGER_TELEPHONE | N | 1 | ||
R32a | WK_START | 8 | WORK_STARTED | N | 1 | D/M/Y | |
R32a | WK_END | 8 | WORK_ENDED | N | 1 | D/M/Y | |
R32a | EXP_BUD | 13 | EXPLORATION_BUDGET | N | 1 | $ | |
R32a | PROD_BUD | 13 | PRODUCTION_BUDGET | N | 1 | $ | |
R32a | COMPLETED | 1 | COMPLETED | N | 1 | Y or N | |
R32a | DISCUSSED | 1 | DISCUSSED | N | 1 | T or F | |
R32a | MDSCREV | 1 | MDSC_REVIEW | N | 1 | T or F | |
R32a | DEP_TARGET | 60 | DEPOSIT_TARGET | N | 1 | ||
R32b | WK_TODO | 70 | WORK_TO_DO | N | 1 | ||
R32b | WK_DONE | 70 | WORK_DONE | N | 1 | ||
R33 | PRJTYP_C | 1 | PROJECT_TYPE_CODE | Y | 1 | table E33 | |
R34 | STAGE_C | 1 | MDAP_STAGE_CODE | N | 1 | table E34 | |
R35 | MINDIV_C | 4 | MINING_DIVISION | Y | 2 | table E09, for Project | |
R36 | NTSMAP_C | 7 | NTS_MAP | Y | 4 | table E10, for Project | |
R39 | REGION_C | 4 | REGION_CODE_PROJECT | Y | 10 | table E40, for Project | |
R40 | REGION_C | 4 | REGION_CODE_MINFILE | Y | 10 | table E40, for MINFILE | |
C01 | IDENT_T | 70 | IDENTIFICATION_COMMENTS | N | unlimited | The mine is ... | upper & lower case text |
C02 | SIGMIN_T | 70 | SIGNIFICANT_MINERALS_COMMENTS | N | 4 | upper & lower case text | |
C03 | ASSMIN_T | 70 | ASSOCIATED_MINERALS_COMMENTS | N | 3 | upper & lower case text | |
C04 | ALTMIN_T | 70 | ALTERATION_MINERALS_COMMENTS | N | 4 | upper & lower case text | |
C05 | STRUCT_T | 70 | STRUCTURAL_COMMENTS | N | 3 | Granduc dep... | upper & lower case text |
C06 | HSTRCK_T | 70 | HOST_ROCK_COMMENTS | N | 2 | Age date ... | upper & lower case text |
C07 | META_T | 70 | METAMORPHISM_COMMENT | N | 1 | upper & lower case text | |
C08 | CAPSUL_T | 70 | CAPSULE_GEOLOGY_COMMENTS | Y | unlimited | The Granduc ... | upper & lower case text |
C09 | BIBLIO_T | 70 | BIBLIOGRAPHY_COMMENTS | Y | unlimited | EMPR BULL ... | upper & lower case text |
C10 | PROD_T | 66 | PRODUCTION_COMMENTS | N | 1 | upper & lower case text | |
C11 | RESERV_T | 70 | RESERVES_COMMENTS | N | unlimited | for each A or B calculation | |
C12 | RESREF_T | 70 | RESERVES_REFERENCE | Y | 1 | Open File ... | for each A or B calculation |
C13 | CONF_NOTE | 70 | CONFIDENTIAL_NOTES | N | unlimited | upper & lower case text | |
C14 | EXPL_T | 70 | EXPLORATION_COMMENTS | N | unlimited | upper & lower case text |
XII: MINFILE Coding Forms
MINFILE Coding Card (PDF, 72 KB)
MINFILE Quick Coding Card ( PDF, 59 KB)
MINFILE Inventory Sheet (PDF, 45 KB)
MINFILE Production Sheet (PDF, 40 KB)
MINFILE Exploration Database (PDF, 18 KB)
XIII: Coder Names and Initials
LASTNAME
|
FIRSTNAME | INITIALS |
BC Geological Survey | BCGS | |
Geological Survey of Canada | GSC | |
Addie | George | GA |
Admin | Cy | CA |
Alldrick | Dani J. | DJA |
Andrews | Kathryn P.E. | KPA |
Archer | Gordon S. | GSA |
Arksey | Ron L. | RLA |
Arseneau | Gilles J. | GJA |
Bailey | David G. | DGB |
Banfield | Shielagh N. | SNB |
Barlow | Nicole | NB |
Bartier | Pat M. | PMB |
Beaudoin | Georges L. | GLB |
Bechard | Alain | AB |
Bellefontaine | Kim A. | KBE |
Bloodgood | Mary A. | MAB |
Borsholm | Cindy B. | CB |
Boyles | Ginger | GB |
Bradford | John | JB |
Britton | Jim M. | JMB |
Brown | Derek A. | DAB |
Butrenchuk | Steve B. | SBB |
Cathro | Michael S. | MSC |
Church | B. Neil | BNC |
Code | Cy | CC |
Colpron | Maurice | MC |
Consultants | Discovery | DISC |
Coombe | William (Bill) | WC |
Coughlan | Laura L. | LLC |
Dawson | Garnet L. | GD |
deGroot | Laura | LDG |
Desautels | Mandy | MND |
Deschenes | Marc | MDE |
Desjardins | Pat | PD |
Didson | Carol I. | CID |
Downie | Charles C. | CCD |
Drobe | John | JD |
Dudka | Steve F. | SFD |
Duffett | Laura L. | LLD |
Dumais | Sandra E. | SED |
Ettlinger | Art D. | ADE |
Faulkner | E.L. (Ted) | ELF |
Ferri | Fil | FF |
Fischl | Peter S. | PSF |
Fischl | Peter | PF |
Fletcher | Betsy A. | BF |
Fontaine | Janet | JF |
Foye | Gary R. | GRF |
Gaba | Robert G. | RGG |
Goodall (Fox Consultants) | Geoff N. | GNG |
Grant | Brian | BG |
Gravel | John L. | JLG |
Green | Kim C. | KG |
Greig | Charles J. | CG |
Gunning | Mike H. | MHG |
Halleran | William H. | WHH |
Hamilton | Tark S. | TSH |
Hancock | Kirk | KDH |
Hiebert | Stephen D. | SH |
Hora | Z. Dan | ZDH |
Hoy | Trygve | TH |
Hubner | Todd B. | TBH |
Hulme | Nigel J. | NJH |
Israel | Steve | SI |
Jakobsen | Dorthe E. | DEJ |
Jones | Larry | LDJ |
Keller | Eileen Van der Flier | EVFK |
Kilby | Caline E. | CEK |
Koyanagi | Victor M. | VMK |
Kulla (Fox Consultants) | Greg K. | GKK |
Lane | Robert (Bob) A. | RAL |
Legun | Andrew S. | ASL |
Leitch | Craig H.B. | CHBL |
Levson | Victor M. | VL |
Logan | Jim | JL |
Logan | Jim M. | JML |
MacDonald | Ken F. | KFM |
Marsden | Henry W. | HWM |
Massey | Nick | NM |
McArthur | Gib | JGM |
McLean | Mary | MM |
McMillan | Ron | RHM |
McMillan | William (Bill) J. | WJM |
Melville | David M. | DMM |
Meredith-Jones | Sarah | SMJ |
Mihalynuk | Mitch G. | MGM |
Morton | Dave | DM |
Mountjoy | Keith J. | KJM |
Nelles | Dave | DMN |
Nelson | Joanne L. | JN |
Nixon | Graham T. | GTN |
Owsiacki | George | GO |
Page | Jay W. | JWP |
Panteleyev | Andre | AP |
Payie | Gary J. | GJP |
Pearson | Cliff A. | CAP |
Pell | Jennifer W. | JP |
Pfuetzenreuter | Shielagh N. | SNP |
Pinsent | Robert H. | RHP |
Preto | Victor A. | VAP |
Ray | Gerry | GR |
Rees | Chris J. | CRE |
Reid | Peter B. | PBR |
Rhyes | Dave | DR |
Riddell | Janet M. | JMR |
Robinson | Nicole | NR |
Rouse | Jonathan N. | JNR |
Schau | Mikkel P. | MPS |
Schiarizza | Paul | PSC |
Schroeter | Tom G. | TGS |
Sibbick | Steve | SS |
Simandl | George J. | GJS |
Smith | Moira T. | MTS |
Stewart | Gregg | GS |
Vanderpoll | Wim S. | WV |
Walters | Lori K. | LKW |
Webster | Ian | ICLW |
White | Gary V. | GVW |
Wilcox | Allan | AFW |
Wilton | Paul | PW |
XIV: Mineral Deposit Profiles
See the Mineral Deposit Profiles page.
XV: Generic Zone Names for Assay/Analysis Category
ADIT
AREA
BRECCIA
DRIFT
DRILLHOLE
DUMP
FAULT
FLOAT
FOOTWALL
GLORY HOLE
GOSSAN
HANGINGWALL
HIGH-GRADE
LENS
MAIN SHOWING
MAIN VEIN
OPENCUT
ORE SHOOT
OUTCROP
PIT
PITS
QUARRY
ROADCUT
ROCK
SAMPLE
SHAFT
SHEAR
SHOWING
SKARN
STOCKPILE
STOCKWORK
TAILINGS
TRENCH
TUNNEL
UNDERGROUND WORKINGS
VEIN
VEINLET
WORKINGS
XVI: MINFILE Regions Codes
CODE
|
DESCRIPTION (sort) | COMMENTS | CODE (sort) | DESCRIPTION |
APCC | Adams Plateau - Clearwater Area | Mining Camp, Area or Belt | *** | Unknown |
AFG | Afghanistan | Country | AARM | Alice Arm |
AKAC | Ainsworth - Kaslo Area | Mining Camp, Area or Belt | AB | Alberta |
AL | Alabama | USA State | AFG | Afghanistan |
AK | Alaska | USA State | AK | Alaska |
AB | Alberta | Province in Canada | AKAC | Ainsworth - Kaslo Area |
ALG | Algeria | Country | AL | Alabama |
AARM | Alice Arm | Mining Camp, Area or Belt | ALG | Algeria |
ALKC | Alta Lake Camp | Mining Camp, Area or Belt | ALKC | Alta Lake Camp |
AND | Andorra | Country | AND | Andorra |
ANG | Angola | Country | ANG | Angola |
ANYX | Anyox Camp | Mining Camp, Area or Belt | ANYX | Anyox Camp |
ARG | Argentina | Country | APCC | Adams Plateau - Clearwater Area |
AZ | Arizona | USA State | AR | Arkansas |
AR | Arkansas | USA State | ARG | Argentina |
ATLC | Atlin Camp | Mining Camp, Area or Belt | ATLC | Atlin Camp |
AUL | Australia | Country | AUL | Australia |
AUS | Austria | Country | AUS | Austria |
BPHC | Babine Porphyry | Mining Camp, Area or Belt | AZ | Arizona |
BRGC | Babine Range | Mining Camp, Area or Belt | BAN | Bangladesh |
BAN | Bangladesh | Country | BC | British Columbia |
BIAC | Banks Island Area | Mining Camp, Area or Belt | BDI | Burundi |
BEVC | Beaverdell Area | Mining Camp, Area or Belt | BEL | Belgium |
BEL | Belgium | Country | BEN | Benin |
BEN | Benin | Country | BEVC | Beaverdell Area |
BOL | Bolivia | Country | BIAC | Banks Island Area |
BOS | Bosnia-Hercegovina | Country | BLKC | Buttle Lake Camp |
BOT | Botswana | Country | BOL | Bolivia |
BRA | Brazil | Country | BOS | Bosnia-Hercegovina |
BRVC | Bridge River Camp | Mining Camp, Area or Belt | BOT | Botswana |
BRAC | Britannia Area | Mining Camp, Area or Belt | BPHC | Babine Porphyry |
BC | British Columbia | Province in Canada | BRA | Brazil |
BUL | Bulgaria | Country | BRAC | Britannia Area |
BUR | Burma | Country | BRGC | Babine Range |
BDI | Burundi | Country | BRVC | Bridge River Camp |
BLKC | Buttle Lake Camp | Mining Camp, Area or Belt | BUL | Bulgaria |
CA | California | USA State | BUR | Burma |
CAM | Cameroon | Country | CA | California |
CAN | Canada | Country | CAM | Cameroon |
CBKC | Cariboo - Barkerville Camp | Mining Camp, Area or Belt | CAN | Canada |
CQBC | Cariboo - Quesnel Belt | Mining Camp, Area or Belt | CAR | Central African Republic |
CASC | Cassiar Camp | Mining Camp, Area or Belt | CASC | Cassiar Camp |
CAR | Central African Republic | Country | CBKC | Cariboo - Barkerville Camp |
CHA | Chad | Country | CCAC | Copper Creek Area |
CHI | Chile | Country | CGBC | Coquihalla Gold Belt |
CPR | China, People's Republic of | Country | CHA | Chad |
CO | Colorado | USA State | CHI | Chile |
COL | Columbia | Country | CO | Colorado |
PRC | Congo, People's Republic of | Country | COL | Columbia |
CT | Connecticut | USA State | COS | Costa Rica |
CCAC | Copper Creek Area | Mining Camp, Area or Belt | CPR | China, People's Republic of |
CGBC | Coquihalla Gold Belt | Mining Camp, Area or Belt | CQBC | Cariboo - Quesnel Belt |
COS | Costa Rica | Country | CRO | Croatia |
CRO | Croatia | Country | CT | Connecticut |
CUB | Cuba | Country | CUB | Cuba |
CYP | Cyprus | Country | CYP | Cyprus |
CZE | Czechoslovakia | Country | CZE | Czechoslovakia |
DE | Delaware | USA State | DE | Delaware |
DEN | Denmark | Country | DEN | Denmark |
ECU | Ecuador | Country | ECU | Ecuador |
EGY | Egypt | Country | EGY | Egypt |
ETH | Ethiopia | Country | ETH | Ethiopia |
FIJ | Fiji | Country | FIJ | Fiji |
FIN | Finland | Country | FIN | Finland |
FL | Florida | USA State | FL | Florida |
FRA | France | Country | FRA | France |
GAB | Gabon | Country | GA | Georgia |
GA | Georgia | USA State | GAB | Gabon |
GER | Germany | Country | GBAC | Gibraltar Area |
GHA | Ghana | Country | GER | Germany |
GBAC | Gibraltar Area | Mining Camp, Area or Belt | GGBC | Graham Island Gold Belt |
GSAC | Goldstream Area | Mining Camp, Area or Belt | GHA | Ghana |
GGBC | Graham Island Gold Belt | Mining Camp, Area or Belt | GMAC | Greenstone Mountain - Meadow Creek Area |
GRE | Greece | Country | GRE | Greece |
GRN | Greenland | Country | GRN | Greenland |
GMAC | Greenstone Mountain - Meadow Creek Area | Mining Camp, Area or Belt | GRNC | Greenwood Camp |
GRNC | Greenwood Camp | Mining Camp, Area or Belt | GSAC | Goldstream Area |
GUA | Guatemala | Country | GUA | Guatemala |
GUI | Guinea | Country | GUI | Guinea |
GUY | Guyana | Country | GUY | Guyana |
HI | Hawaii | USA State | HEDC | Hedley Camp |
HEDC | Hedley Camp | Mining Camp, Area or Belt | HI | Hawaii |
HVMC | Highland Valley Camp | Mining Camp, Area or Belt | HON | Honduras |
HON | Honduras | Country | HUN | Hungary |
HUN | Hungary | Country | HVMC | Highland Valley Camp |
ID | Idaho | USA State | IA | Iowa |
IL | Illinois | USA State | ICAC | Island Copper Area |
IND | India | Country | ID | Idaho |
IN | Indiana | USA State | IL | Illinois |
INS | Indonesia | Country | IMAC | Iron Mask Area |
IA | Iowa | USA State | IN | Indiana |
IRA | Iran, Islamic Republic of | Country | IND | India |
IRQ | Iraq | Country | INS | Indonesia |
IRE | Ireland | Country | IRA | Iran, Islamic Republic of |
IMAC | Iron Mask Area | Mining Camp, Area or Belt | IRE | Ireland |
ICAC | Island Copper Area | Mining Camp, Area or Belt | IRQ | Iraq |
ISR | Israel | Country | ISR | Israel |
ITA | Italy | Country | ITA | Italy |
JPN | Japan | Country | JOR | Jordan |
JOR | Jordan | Country | JPN | Japan |
KS | Kansas | USA State | KEN | Kenya |
KY | Kentucky | USA State | KORG | Kootenay Region |
KEN | Kenya | Country | KS | Kansas |
KORG | Kootenay Region | Regional Geologist Region | KUW | Kuwait |
ROK | Korea, Republic of | Country | KY | Kentucky |
KUW | Kuwait | Country | LA | Louisiana |
LRGC | Leech River Gold Belt | Mining Camp, Area or Belt | LES | Lesotho |
LES | Lesotho | Country | LHBC | Lillooet River - Harrison Lake Belt |
LHBC | Lillooet River - Harrison Lake Belt | Mining Camp, Area or Belt | LRGC | Leech River Gold Belt |
LA | Louisiana | USA State | MA | Massachusetts |
MAG | Madagascar | Country | MAG | Madagascar |
ME | Maine | USA State | MAL | Malaysia |
MLW | Malawi | Country | MAU | Mauritania |
MAL | Malaysia | Country | MB | Manitoba |
MLI | Mali | Country | MD | Maryland |
MB | Manitoba | Province in Canada | ME | Maine |
MD | Maryland | USA State | MEX | Mexico |
MA | Massachusetts | USA State | MI | Michigan |
MAU | Mauritania | Country | MLI | Mali |
MEX | Mexico | Country | MLW | Malawi |
MI | Michigan | USA State | MN | Minnesota |
MN | Minnesota | USA State | MO | Missouri |
MS | Mississippi | USA State | MOR | Morocco |
MO | Missouri | USA State | MOZ | Mozambique |
MT | Montana | USA State | MS | Mississippi |
MSBC | Moresby Island Skarn Belt | Mining Camp, Area or Belt | MSBC | Moresby Island Skarn Belt |
MOR | Morocco | Country | MT | Montana |
MOZ | Mozambique | Country | MWAC | Mt. Washington Area |
MWAC | Mt. Washington Area | Mining Camp, Area or Belt | NAM | Nambia |
NAM | Nambia | Country | NB | New Brunswick |
NE | Nebraska | USA State | NC | North Carolina |
NTH | Netherlands | Country | NCBC | Nicola Belt |
NV | Nevada | USA State | NCRG | Northeast-Central Region |
NB | New Brunswick | Province in Canada | ND | North Dakota |
NH | New Hampshire | USA State | NDEC | New Nadina - Equity Area |
NJ | New Jersey | USA State | NE | Nebraska |
NM | New Mexico | USA State | NER | Niger |
NDEC | New Nadina - Equity Area | Mining Camp, Area or Belt | NF | Newfoundland |
NY | New York | USA State | NH | New Hampshire |
NZL | New Zealand | Country | NIC | Nicaragua |
NF | Newfoundland | Province in Canada | NIR | Nigeria |
NIC | Nicaragua | Country | NJ | New Jersey |
NCBC | Nicola Belt | Mining Camp, Area or Belt | NKAC | Nimpkish Area |
NER | Niger | Country | NM | New Mexico |
NIR | Nigeria | Country | NOR | Norway |
NKAC | Nimpkish Area | Mining Camp, Area or Belt | NS | Nova Scotia |
NC | North Carolina | USA State | NT | Northwest Territories |
ND | North Dakota | USA State | NTH | Netherlands |
NCRG | Northeast-Central Region | Regional Geologist Region | NV | Nevada |
NWRG | Northwest Region | Regional Geologist Region | NWRG | Northwest Region |
NT | Northwest Territories | Territory in Canada | NY | New York |
NOR | Norway | Country | NZL | New Zealand |
NS | Nova Scotia | Province in Canada | OH | Ohio |
OH | Ohio | USA State | OK | Oklahoma |
OK | Oklahoma | USA State | OMA | Oman, Sultanate of |
OMA | Oman, Sultanate of | Country | ON | Ontario |
ON | Ontario | Province in Canada | OR | Oregon |
OR | Oregon | USA State | PA | Pennsylvania |
PAK | Pakistan | Country | PAK | Pakistan |
PAR | Paraguay | Country | PAR | Paraguay |
PMDC | Pemberton District | Mining Camp, Area or Belt | PBSC | Purcell Belt (Sullivan) |
PA | Pennsylvania | USA State | PE | Prince Edward Island |
PER | Peru | Country | PER | Peru |
PHI | Philippines | Country | PHI | Philippines |
POL | Poland | Country | PMDC | Pemberton District |
POR | Portugal | Country | POL | Poland |
PE | Prince Edward Island | Province in Canada | POR | Portugal |
PBSC | Purcell Belt (Sullivan) | Mining Camp, Area or Belt | PQ | Quebec |
PQ | Quebec | Province in Canada | PRC | Congo, People's Republic of |
QCIS | Queen Charlotte Islands | Area in British Columbia | QCIS | Queen Charlotte Islands |
RI | Rhode Island | USA State | RI | Rhode Island |
ROM | Romania | Country | ROK | Korea, Republic of |
ROSC | Rossland Camp | Mining Camp, Area or Belt | ROM | Romania |
RUS | Russia | Country | ROSC | Rossland Camp |
RWA | Rwanda | Country | RUS | Russia |
SSAC | Salmo - Sheep Creek Area | Mining Camp, Area or Belt | RWA | Rwanda |
SGAC | Sarita - Gordon River Area | Mining Camp, Area or Belt | SAF | South Africa |
SK | Saskatchewan | Province in Canada | SAU | Saudi Arabia |
SAU | Saudi Arabia | Country | SBAC | Similkameen - Boundary Area |
SEN | Senegal | Country | SC | South Carolina |
SKBC | Sicker Belt | Mining Camp, Area or Belt | SCRG | South-Central Region |
SLN | Sierra Leone | Country | SD | South Dakota |
SRAC | Silver Standard - Rocher Deboule Area | Mining Camp, Area or Belt | SEN | Senegal |
SBAC | Similkameen - Boundary Area | Mining Camp, Area or Belt | SGAC | Sarita - Gordon River Area |
SLOC | Slocan Camp | Mining Camp, Area or Belt | SK | Saskatchewan |
SLO | Slovenia | Country | SKBC | Sicker Belt |
SOM | Somalia | Country | SLAC | Stump Lake Area |
SCRG | South-Central Region | Regional Geologist Region | SLN | Sierra Leone |
SAF | South Africa | Country | SLO | Slovenia |
SC | South Carolina | USA State | SLOC | Slocan Camp |
SD | South Dakota | USA State | SMAC | Swakum Mountain Area |
SWRG | Southwest Region | Regional Geologist Region | SOM | Somalia |
SPA | Spain | Country | SPA | Spain |
STWC | Stewart Camp | Mining Camp, Area or Belt | SRAC | Silver Standard - Rocher Deboule Area |
SLAC | Stump Lake Area | Mining Camp, Area or Belt | SSAC | Salmo - Sheep Creek Area |
SUD | Sudan | Country | STWC | Stewart Camp |
SMAC | Swakum Mountain Area | Mining Camp, Area or Belt | SUD | Sudan |
SWA | Swaziland | Country | SWA | Swaziland |
SWE | Sweden | Country | SWE | Sweden |
SWZ | Switzerland | Country | SWRG | Southwest Region |
TNZ | Tanzania, United Republic of | Country | SWZ | Switzerland |
TBAC | Taseko - Blackdome Area | Mining Camp, Area or Belt | TBAC | Taseko - Blackdome Area |
TRGC | Telkwa Range | Mining Camp, Area or Belt | THA | Thailand |
TN | Tennessee | USA State | TKAC | Tofino - Kennedy River Area |
TXIS | Texada Island | Mining Camp, Area or Belt | TMAC | Tillicum Mountain Area |
TX | Texas | USA State | TN | Tennessee |
THA | Thailand | Country | TNZ | Tanzania, United Republic of |
TMAC | Tillicum Mountain Area | Mining Camp, Area or Belt | TODC | Toodoggone Camp |
TKAC | Tofino - Kennedy River Area | Mining Camp, Area or Belt | TOG | Togo |
TOG | Togo | Country | TRGC | Telkwa Range |
TODC | Toodoggone Camp | Mining Camp, Area or Belt | TUN | Tunisia |
TUN | Tunisia | Country | TUR | Turkey |
TUR | Turkey | Country | TX | Texas |
UGA | Uganda | Country | TXIS | Texada Island |
UAE | United Arab Emirates | Country | UAE | United Arab Emirates |
UK | United Kingdom | Country | UGA | Uganda |
USA | United States of America | Country | UK | United Kingdom |
*** | Unknown | Unknown Region | URU | Uruguay |
URU | Uruguay | Country | USA | United States of America |
UT | Utah | USA State | UT | Utah |
VANI | Vancouver Island | Area in British Columbia | VA | Virginia |
VEN | Venezuela | Country | VANI | Vancouver Island |
VT | Vermont | USA State | VEN | Venezuela |
VTN | Vietnam | Country | VT | Vermont |
VA | Virginia | USA State | VTN | Vietnam |
WA | Washington State | USA State | WA | Washington State |
WV | West Virginia | USA State | WI | Wisconsin |
WI | Wisconsin | USA State | WV | West Virginia |
WY | Wyoming | USA State | WY | Wyoming |
YNAC | Ymir - Nelson Area | Mining Camp, Area or Belt | YNAC | Ymir - Nelson Area |
YUG | Yugoslavia | Country | YT | Yukon |
YT | Yukon | Territory in Canada | YUG | Yugoslavia |
ZAI | Zaire | Country | ZAI | Zaire |
ZAM | Zambia | Country | ZAM | Zambia |
ZKAC | Zeballos - Kyuquot Area | Mining Camp, Area or Belt | ZIM | Zimbabwe |
ZIM | Zimbabwe | Country | ZKAC | Zeballos - Kyuquot Area |
XVII: Electoral District Codes
Electoral Id | Electoral Name | Electoral Abbrvtn |
1 | Vancouver-Mount Pleasant | VMP |
2 | Vancouver-West End | VNW |
3 | West Vancouver-Sea to Sky | WSS |
4 | Abbotsford West | ABW |
5 | Burnaby-Edmonds | BNE |
6 | Cariboo North | CBN |
7 | Comox Valley | CMX |
8 | Delta North | DLN |
9 | Fraser-Nicola | FRN |
10 | Kelowna-Lake Country | KLA |
11 | Langley | LLY |
12 | Nanaimo-North Cowichan | NCW |
13 | North Coast | NOC |
14 | Oak Bay-Gordon Head | OBG |
15 | Penticton | PEN |
16 | Prince George-Mackenzie | PRM |
17 | Richmond-Steveston | RCS |
18 | Skeena | SKE |
19 | Surrey-Green Timbers | SRG |
20 | Surrey-Whalley | SWH |
21 | Vancouver-Fraserview | VFV |
22 | Vancouver-Langara | VLA |
23 | Vernon-Monashee | VRM |
24 | West Vancouver-Capilano | WCA |
25 | Abbotsford South | ABS |
26 | Burnaby-Deer Lake | BND |
27 | Cariboo-Chilcotin | CBC |
28 | Columbia River-Revelstoke | CLR |
29 | Cowichan Valley | CWV |
30 | Fort Langley-Aldergrove | FLA |
31 | Kamloops-South Thompson | KAS |
32 | Kootenay West | KOW |
33 | Nanaimo | NAN |
34 | New Westminster | NEW |
35 | North Vancouver-Seymour | NVS |
36 | Peace River South | PCS |
37 | Powell River-Sunshine Coast | POR |
38 | Richmond East | RCE |
39 | Shuswap | SHU |
40 | Surrey-Fleetwood | SRF |
41 | Surrey-Tynehead | SRT |
42 | Vancouver-False Creek | VFC |
43 | Vancouver-Kingsway | VKI |
44 | Vancouver-Quilchena | VNQ |
45 | Victoria-Swan Lake | VTS |
46 | Abbotsford-Mission | ABM |
47 | Boundary-Similkameen | BDS |
48 | Burnaby North | BNN |
49 | Chilliwack-Hope | CHH |
50 | Coquitlam-Maillardville | CQM |
51 | Esquimalt-Royal Roads | ESR |
52 | Kamloops-North Thompson | KAN |
53 | Kootenay East | KOE |
54 | Maple Ridge-Pitt Meadows | MRP |
55 | Nelson-Creston | NEL |
56 | North Vancouver-Lonsdale | NVL |
57 | Peace River North | PCN |
58 | Port Moody-Coquitlam | POM |
59 | Richmond Centre | RCC |
60 | Saanich South | SAS |
61 | Surrey-Cloverdale | SRC |
62 | Surrey-Panorama | SRP |
63 | Vancouver-Fairview | VFA |
64 | Vancouver-Kensington | VKE |
65 | Vancouver-Point Grey | VNP |
66 | Victoria-Beacon Hill | VTB |
67 | Westside-Kelowna | WTK |
68 | Alberni-Pacific Rim | APR |
69 | Burnaby-Lougheed | BNL |
70 | Chilliwack | CHC |
71 | Coquitlam-Burke Mountain | CQB |
72 | Delta South | DLS |
73 | Juan de Fuca | JDF |
74 | Kelowna-Mission | KMI |
75 | Maple Ridge-Mission | MRM |
76 | Nechako Lakes | NEC |
77 | North Island | NOI |
78 | Parksville-Qualicum | PAQ |
79 | Port Coquitlam | POC |
80 | Prince George-Valemount | PRV |
81 | Saanich North and the Islands | SAN |
82 | Stikine | SKN |
83 | Surrey-Newton | SRN |
84 | Surrey-White Rock | SWR |
85 | Vancouver-Hastings | VHA |
XVIII: Resource Districts
Resource Id | Resource Name |
1 | South Island Natural Resource District |
2 | Chilliwack Natural Resource District |
3 | Sea to Sky Natural Resource District |
4 | Campbell River Natural Resource District |
5 | Sunshine Coast Natural Resource District |
6 | Cascades Natural Resource District |
7 | Rocky Mountain Natural Resource District |
8 | Okanagan Shuswap Natural Resource District |
9 | 100 Mile House Natural Resource District |
10 | Selkirk Natural Resource District |
11 | Thompson Rivers Natural Resource District |
12 | Cariboo-Chilcotin Natural Resource District |
13 | North Island - Central Coast Natural Resource District |
14 | Quesnel Natural Resource District |
15 | Vanderhoof Natural Resource District |
16 | Haida Gwaii Natural Resource District |
17 | Prince George Natural Resource District |
18 | Nadina Natural Resource District |
19 | Coast Mountains Natural Resource District |
20 | Fort St. James Natural Resource District |
21 | Mackenzie Natural Resource District |
22 | Peace Natural Resource District |
23 | Fort Nelson Natural Resource District |
24 | Skeena Stikine Natural Resource District |
XIX: Tectonic Belt Codes
Tectonic Belt
|
Code |
Insular | IN |
Coast Crystalline | CC |
Intermontane | IM |
Omineca | OM |
Foreland | EA |
Unknown | ** |